Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T02:59:27.651Z Has data issue: false hasContentIssue false

Microstructural Characterization of Long-Period Stacking Ordered Phases in Mg97Zn1Y2 (at.%) Alloy

Published online by Cambridge University Press:  30 July 2013

Xiaohong Shao
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China Department of Applied Physics, Zernike Institute for Advanced Materials and Materials innovation institute M2i, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
Huajie Yang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China Department of Applied Physics, Zernike Institute for Advanced Materials and Materials innovation institute M2i, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
Jeff T.M. De Hosson*
Affiliation:
Department of Applied Physics, Zernike Institute for Advanced Materials and Materials innovation institute M2i, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
Xiuliang Ma*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
*Corresponding author. E-mail: J.T.M.De.Hosson@rug.nl
**Corresponding author. E-mail: xlma@imr.ac.cn
Get access

Abstract

Transmission electron microscopy characterization of two major long-period stacking ordered (LPSO) phases in Mg–Zn–Y alloy, i.e., 18R- and 14H-LPSO are reported. The space group and atomic-scale microstructures of both compounds were determined using a combination of electron diffraction, convergent beam electron diffraction, high-resolution transmission electron microscopy, and Z-contrast scanning transmission electron microscopy. The 18R-LPSO phase is demonstrated to have a point group and space group 3m and R3m (or 3m and R3m), with the lattice parameter a = 1.112 nm and c = 4.689 nm in a hexagonal coordinate system. The 14H-LPSO phase has a point group 6/mmm and a space group P63 /mmc, and the lattice parameter is a = 1.112 nm and c = 3.647 nm. In addition, insertion of extra thin Mg platelets of several atomic layers, results in stacking faults in the LPSO phase. These results may shed some new light on a better understanding of the microstructure and deformation mechanisms of LPSO phases in Mg alloys.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, E., Kawamura, Y., Hayashi, K. & Inoue, A. (2002). Long-period ordered structure in a high-strength nanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic-resolution Z-ontrast STEM. Acta Mater 50, 38453857.Google Scholar
Amiya, K., Ohsuna, T. & Inoue, A. (2003). Long-period hexagonal structures in melt-spun Mg97Ln2Zn1 (Ln = lanthanide metal) alloys. Mater Trans, JIM 44, 21512156.CrossRefGoogle Scholar
Bae, D., Lee, M., Kim, K., Kim, W. & Kim, D. (2002). Application of quasicrystalline particles as a strengthening phase in Mg-Zn-Y alloys. J Alloys Compd 342, 445450.Google Scholar
Chino, Y., Mabuchi, M., Hagiwara, S., Iwasaki, H., Yamamoto, A. & Tsubakino, H. (2004). Novel equilibrium two phase Mg alloy with the long-period ordered structure. Scr Mater 51, 711714.Google Scholar
Hagihara, K., Kinoshita, A., Fukusumi, Y., Yamasaki, M. & Kawamura, Y. (2013). High-temperature compressive deformation behavior of Mg97Zn1Y2 extruded alloy containing a long-period stacking ordered (LPSO) phase. Mater Sci Eng A 560, 7179.Google Scholar
Hahn, T., Shmueli, U. & Wilson, A. (1983). International Tables for Crystallography. Boston, MA: D. Reidel Publishing Company.Google Scholar
Hirsch, P.B. (1977). Electron Microscopy of Thin Crystals. Huntington, NY: Krieger Publishing Company.Google Scholar
Honma, T., Ohkubo, T., Kamado, S. & Hono, K. (2007). Effect of Zn additions on the age-hardening of Mg–2.0Gd–1.2Y–0.2Zr alloys. Acta Mater 55, 41374150.CrossRefGoogle Scholar
Inoue, A., Kawamura, Y., Matsushita, M., Hayashi, K. & Koike, J. (2001). Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system. J Mater Res 16, 18941900.Google Scholar
Itoi, T., Seimiya, T., Kawamura, Y. & Hirohashi, M. (2004). Long period stacking structures observed in Mg97Zn1Y2 alloy. Scr Mater 51, 107111.Google Scholar
Kawamura, Y., Hayashi, K., Inoue, A. & Masumoto, T. (2001). Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa. Mater Trans 42, 11721176.CrossRefGoogle Scholar
Kawamura, Y. & Yamasaki, M. (2007). Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure. Mater Trans 48, 29862992.Google Scholar
Lin, Z., Zhuo, M., He, L., Zhou, Y., Li, M. & Wang, J. (2006). Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5 ceramics. Acta Mater 54, 38433851.Google Scholar
Luo, Z. & Zhang, S. (2000). High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy. J Mater Sci Lett 19, 813815.Google Scholar
Ma, X., Zhu, Y., Wang, X. & Zhou, Y. (2004). Microstructural characterization of bulk Ti3AlC2 ceramics. Philos Mag 84, 29692977.Google Scholar
Matsuda, M., Ii, S., Kawamura, Y., Ikuhara, Y. & Nishida, M. (2005). Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy. Mater Sci Eng A 393, 269274.CrossRefGoogle Scholar
Matsuura, M., Konno, K., Yoshida, M., Nishijima, M. & Hiraga, K. (2006). Precipitates with peculiar morphology consisting of a disk-shaped amorphous core sandwiched between 14H-typed long period stacking order crystals in a melt-quenched Mg98Cu1Y1 alloy. Mater Trans 47, 12641267.Google Scholar
Mizutani, U., Yamaguchi, T., Tomofuji, T., Yanagi, Y., Itoh, Y., Saitoh, K., Tanaka, N., Matsunami, N. & Ikuta, H. (2009). Factors affecting extreme ultraviolet reflectivity of mo/si multilayer films synthesized by superconducting magnetron sputtering. Jap J Appl Phys 48, 25507. CrossRefGoogle Scholar
Ono, A., Abe, E., Itoi, T., Hirohashi, M., Yamasaki, M. & Kawamura, Y. (2008). Microstructure evolutions of rapidly-solidified and conventionally-cast Mg97Zn1Y2 alloys. Mater Trans 49, 990994.CrossRefGoogle Scholar
Pennycook, S. & Jesson, D. (1992). Atomic resolution Z-contrast imaging of interfaces. Acta Metall Mater 40, S149S159.Google Scholar
Ping, D.H., Hono, K., Kawamura, Y. & Inoue, A. (2002). Local chemistry of a nanocrystalline high-strength Mg97Y2Zn1 alloy. Philos Mag Lett 82, 543551.Google Scholar
Shao, X.H., Yang, Z.Q. & Ma, X.L. (2010). Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure. Acta Mater 58, 47604771.Google Scholar
Yamasaki, M., Anan, T., Yoshimoto, S. & Kawamura, Y. (2005). Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate. Scr Mater 53, 799803.Google Scholar
Yamasaki, M., Sasaki, M., Nishijima, M., Hiraga, K. & Kawamura, Y. (2007). Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg–Zn–Gd alloys during isothermal aging at high temperature. Acta Mater 55, 67986805.CrossRefGoogle Scholar
Yang, H., Shi, Y., Guo, Y., Liu, X., Xiao, R., Luo, J. & Li, J. (2005). Physical properties, strontium ordering and structural modulation in layered hexagonal Sr0.35CoO2. Arxiv: cond-mat/0503136.Google Scholar
Yoshimoto, S., Yamasaki, M. & Kawamura, Y. (2006). Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure. Mater Trans 47, 959965.Google Scholar
Yu, R., Zhan, Q., He, L., Zhou, Y. & Ye, H. (2003). Stacking faults and grain boundaries of Ti3SiC2 . Philos Mag Lett 83, 325331.Google Scholar
Zhang, J., Wang, J. & Zhou, Y. (2007a). Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu–Ti3AlC2 composites. Acta Mater 55, 43814390.Google Scholar
Zhang, Y., Yang, H.X., Ma, C., Tian, H.F. & Li, J.Q. (2007b). Charge-stripe order in the electronic ferroelectric LuFe2O4 . Phys Rev Lett 98, 247602. CrossRefGoogle ScholarPubMed
Zhu, Y., Morton, A. & Nie, J. (2007). Characterization of intermetallic phases and planar defects in Mg-Y-Zn alloys. Mater Sci Forum 561565, 151154.Google Scholar
Zhu, Y., Morton, A. & Nie, J. (2010). The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys. Acta Mater 58, 29362947.Google Scholar
Zhu, Y., Weyland, M., Morton, A., Oh-ishi, K., Hono, K. & Nie, J. (2009). The building block of long-period structures in Mg-RE-Zn alloys. Scr Mater 60, 980983.Google Scholar