Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 10
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Calò, Annalisa Eiben, Sabine Okuda, Mitsuhiro and Bittner, Alexander M. 2016. Nanoscale device architectures derived from biological assemblies: The case of tobacco mosaic virus and (apo)ferritin. Japanese Journal of Applied Physics, Vol. 55, Issue. 3S2, p. 03DA01.

    Chuaychan, Sira Benjakul, Soottawat and Nuthong, Pornpot 2016. Element distribution and morphology of spotted golden goatfish fish scales as affected by demineralisation. Food Chemistry, Vol. 197, p. 814.

    Shiba, Kota Motozuka, Satoshi Yamaguchi, Tadashi Ogawa, Nobuhiro Otsuka, Yuichi Ohnuma, Kiyoshi Kataoka, Takuya and Tagaya, Motohiro 2016. Effect of Cationic Surfactant Micelles on Hydroxyapatite Nanocrystal Formation: An Investigation into the Inorganic–Organic Interfacial Interactions. Crystal Growth & Design, Vol. 16, Issue. 3, p. 1463.

    Tagaya, M. 2016. Effective segregation of cytocompatible chitosan molecules in a silica-surfactant nanostructure formation process. RSC Adv., Vol. 6, Issue. 18, p. 14452.

    van Essen, T.H. van Zijl, L. Possemiers, T. Mulder, A.A. Zwart, S.J. Chou, C.-H. Lin, C.C. Lai, H.J. Luyten, G.P.M. Tassignon, M.J. Zakaria, N. El Ghalbzouri, A. and Jager, M.J. 2016. Biocompatibility of a fish scale-derived artificial cornea: Cytotoxicity, cellular adhesion and phenotype, and in vivo immunogenicity. Biomaterials, Vol. 81, p. 36.

    Tagaya, Motohiro 2015. In situ QCM-D study of nano-bio interfaces with enhanced biocompatibility. Polymer Journal, Vol. 47, Issue. 9, p. 599.

    Hos, D. van Essen, T.H. Bock, F. Chou, C.-H. Pan, H.-A. Lin, C.-C. Huang, M.-C. Chen, S.-C. Cursiefen, C. and Jager, M.J. 2014. Dezellularisierte Kollagenmatrix aus der Schuppe des Tilapia-Fisches als Hornhautersatz („BioCornea“). Der Ophthalmologe, Vol. 111, Issue. 11, p. 1027.

    Karamichos, Dimitrios and Hjortdal, Jesper 2014. Keratoconus: Tissue Engineering and Biomaterials. Journal of Functional Biomaterials, Vol. 5, Issue. 3, p. 111.

    Olatunji, Ololade Igwe, Chima C. Ahmed, Aroke S. Alhassan, Dewale O. A. Asieba, GGodfrey O. and Diganta, Bhusan Das 2014. Microneedles from fish scale biopolymer. Journal of Applied Polymer Science, Vol. 131, Issue. 12, p. n/a.

    Mori, Hideki Tone, Yurie Shimizu, Kouske Zikihara, Kazunori Tokutomi, Satoru Ida, Tomoaki Ihara, Hideshi and Hara, Masayuki 2013. Studies on fish scale collagen of Pacific saury (Cololabis saira). Materials Science and Engineering: C, Vol. 33, Issue. 1, p. 174.


Minerals and Aligned Collagen Fibrils in Tilapia Fish Scales: Structural Analysis Using Dark-Field and Energy-Filtered Transmission Electron Microscopy and Electron Tomography

  • Mitsuhiro Okuda (a1) (a2), Nobuhiro Ogawa (a1), Masaki Takeguchi (a2), Ayako Hashimoto (a3), Motohiro Tagaya (a1), Song Chen (a1), Nobutaka Hanagata (a1) and Toshiyuki Ikoma (a4)
  • DOI:
  • Published online: 08 September 2011

The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.

Corresponding author
Corresponding author. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

H.C. Anderson (2003). Matrix vesicles and calcification. Cur Rheumatol Rep 5, 222226.

A. Ascenzi , E. Bonucci & D.S. Bocciarelli (1965). An electron microscope study of osteon calcification. J Ultrastruct Res 12, 287303.

M.G. Ascenzi , A. Ascenzi , A. Benvenuti , M. Burghammer , S. Panzavolta & A. Bigi (2003). Structural differences between “dark” and “bright” isolated human osteonic lamellae. J Struct Biol 141, 2233.

J. Bereiter-Hahn & L. Zylberberg (1993). Regeneration of teleost fish scale. Comp Biochem Physiol 105, 625641.

A. Bigi , M. Burghammer , R. Falconi , M.H.J. Kosh , S. Panzavolta & C. Riekel (2001). Twisted plywood pattern of collagen fibrils in teleost scales: An X-ray diffraction investigation. J Struct Biol 136, 137143.

A. Bigi , M. Gandolfi , M.H.J. Koch & N. Roveri (1991). Structural analysis of turkey tendon collagen upon removal of the inorganic phase. Int J Biol Macromol 13, 110114.

A. Bigi , M.H.J. Koch , A. Ripamonti & N. Roveri (1988). Calcified turkey leg tendon as structural model for bone mineralization. Int J Biol Macromol 10, 282286.

M.J. Capaldi & J.A. Chapman (1982). The C-terminal extrahelical peptide of type I collagen and its role in fibrillogenesis in vitro. Biopolymers 21, 22912313.

P. Dechichi , J.C. Biffi , C.C. Moura & A.W. de Ameida (2007). A model of the early mineralization process of mantle dentin. Micron 38, 486491.

R. Fujisawa , Y. Nodasaka & Y. Kuboki (1995). Further characterization of interaction between bone sialoprotein (BSP) and collagen. Calcif Tissue Int 56, 140144.

J. Ge , F.-Z. Cui , X. Wang & Y. Wang (2007). New evidence of surface mineralization of collagen fibrils in wild type zebrafish skeleton by AFM and TEM. Mater Sci Eng C 27, 4650.

G. Gregori , H.J. Kleebe , H. Mayer & G. Ziegler (2006). EELS characterisation of β-tricalcium phosphate and hydroxyapatite. J Eur Ceram Soc 26, 14731479.

T. Ikoma , H. Kobayashi , J. Tanaka , D. Walsh & S. Mann (2003). Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J Struct Biol 142, 327333.

H. Jiang , D. Ramunno-Johnson , C. Song , B. Amirbekian , Y. Kohmura , Y. Nishino , Y. Takahashi , T. Ishikawa & J. Miao (2008). Nanoscale imaging of mineral crystals inside biological composite materials using X-ray diffraction microscopy. Phys Rev Lett 100, 038103.

K.E. Kadler , D.F. Holmers , J.A. Trotter & J.A. Chapman (1996). Collagen fibril formation. Biochem J 316, 111.

D.M. Kohler , M.A. Crenshaw & A.L. Arsenault (1994). Three-dimensional analysis of mineralizing turkey leg tendon: Matrix vesicle-collagen relationships. Matrix Biol 14, 543552.

W.J. Landis & M.J. Glimcher (1978). Electron-diffraction and electron-probe microanalysis of mineral phase of bone tissue prepared by anhydrous techniques. J Ultrastruct Res 63, 188223.

W.J. Landis & M.J. Glimcher (1982). Electron-optical and analytical observations of rat growth plate cartilage prepared by ultra-cryomicrotomy—The failure to detect a mineral phase in matrix vesicles and the identification of heterodispersed particles as the initial solid-phase of calcium-phosphate deposited in the extracellular-matrix. J Ultrastruct Res 78, 227268.

W.J. Landis , B.T. Hauschka , C.A. Rogerson & M.J. Glimcher (1977). Electron-microscopic observations of bone tissue prepared by ultra-cryomicrotomy. J Ultrastruct Res 59, 185206.

W.J. Landis , K.J. Hodgens , M.J. Song , J. Arena , S. Kiyonaga , M. Marko , C. Owen & B.F. McEwen (1996). Mineralization of collagen may occur on fibril surfaces: Evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J Struct Biol 117, 2435.

W.J. Landis , F.H. Silver & J.W. Freeman (2006). Collagen as a scaffolding for biomimetic mineralization. J Mater Chem 16, 14951503.

W.J. Landis , M.J. Song , A. Leith , L. McEwen & B. McEwen (1993). Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image-reconstruction. J Struct Biol 110, 3954.

S. Lees & K. Prostak (1988). The locus of mineral crystallites in bone. Connect Tissue Res 18, 4154.

S.J. Leibovich & J.B. Weiss (1970). Electron microscope studies of the effects of endo- and exopeptidase digestion on tropocollagen. A novel concept of the role of terminal regions in fibrillogenesis. Biochim Biophys Acta 214, 445454.

S. Liao , M. Ngiam , F. Watari , S. Ramakrishna & C.K. Chan (2007). Systematic fabrication of nano-carbonated hydroxyapatite/collagen composites for biomimetic bone grafts. Bioinsp Biomim 2, 3741.

A.C. Liou , A.Y. Chen , H.Y. Lee & L.S. Bow (2004). Structural characterization of nano-sized calcium deficient apatite powders. Biomaterials 25, 189196.

R.B. Martin , D. Burr & N. Sharkey (1998). Skeletal Tissue Mechanics. New York: Springer-Verlag.

P.A. Midgly & M. Weyland (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413431.

M.F. Neurath (1993). Detection of luse bodies, spiraled collagen, dysplastic collagen, and intracellular collagen in rheumatoid connective tissues: An electron microscopic study. Ann Rheum Dis 52, 278284.

M. Okuda , M. Takeguchi , M. Tagaya , T. Tonegawa , A. Hashimoto , N. Hanagata & T. Ikoma (2009). Elemental distribution analysis of type I collagen fibrils in tilapia fish scale with energy-filtered transmission electron microscope. Micron 40, 665668.

O.P. Olson & N. Watabe (1980). Studies on formation and resorption of fish scales. Cell Tissue Res 211, 303316.

M. Olszta , X. Cheng , S. Jee , R. Kumar , Y. Kim , M. Kaufman , E. Douglas & L. Gower (2007). Bone structure and formation: A new perspective. Mater Sci Eng R 58, 77116.

G.J. Parfitt , C. Pinali , R.D. Young , A.J. Quantock & C. Knupp (2010). Three-dimensional reconstruction of collagen-proteoglycan interactions in the mouse corneal stroma by electron tomography. J Struct Biol 170, 392397.

J.A. Petruska & A.J. Hodge (1964). A subunit model for the tropocollagen macromolecule. Proc Natl Acad Sci USA 51, 871876.

U. Plate , H.J. Hohling , L. Reimer , R.H. Barckhaus , R. Wienecke , H.P. Wiesmann & A. Boyde (1992). Analysis of the calcium distribution in predentine by EELS and of the early crystal-formation in dentin by ESI and ESD. J Microsc 166(Pt 3), 329341.

A.A. Schönbörner , G. Boivin & C.A. Baud (1979). The mineralization process in teleost fish scales. Cell Tissue Res 202, 203212.

B.V. Vanmeerbeek , A. Dhem , M. Goret-Nicaise , M. Braem , P. Lambrechts & G. VanHerle (1993). Comparative SEM and TEM examination of the ultrastructure of the resin-dentin interdiffusion zone. J Dent Res 72, 495501.

S. Weiner , W. Traub & D. Wagner (1993). Lamellar bone: Structure–function relations. J Struct Biol 126, 241255.

S. Weiner & H.D. Wagner (1998). The material bone: Structure mechanical function relations. Ann Rev Mater Sci 28, 271298.

J. Yamada & N. Watabe (1979). Studies on fish scale formation and resorption. I. Fine structure and calcification of the scales in Fundulus heteroclitus (Atheriniformes: Cyprinodontidae). J Morphol 159, 4966.

L. Zylberberg , J. Bereiter-Hahn & J.Y. Sire (1988). Cytoskeletal organization and collagen orientation in the fish scales. Cell Tissue Res 253, 597607.

L. Zylberberg , B. Chanet , F. Wagemans & F.O.J. Meunier (2003). Structural peculiarities of the tubercles in the skin of the turbot, Scophthalmus maximus (L., 1758) (Osteichthyes, Pleuronectiformes, Scophthalmidae). J Morphol 258, 8496.

L. Zylberberg & G. Nicolas (1982). Ultrastructure of scales in a teleost (Carassius auratus L.) after use of rapid freeze-fixation and freeze-substitution. Cell Tissue Res 223, 349367.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *