Skip to main content
×
×
Home

A Model Ni–Al–Mo Superalloy Studied by Ultraviolet Pulsed-Laser-Assisted Local-Electrode Atom-Probe Tomography

  • Yiyou Tu (a1) (a2), Elizaveta Y. Plotnikov (a2) and David N. Seidman (a2) (a3)
Abstract

This study investigates the effects of the charge-state ratio of evaporated ions on the accuracy of local-electrode atom-probe (LEAP) tomographic compositional and structural analyses, which employs a picosecond ultraviolet pulsed laser. Experimental results demonstrate that the charge-state ratio is a better indicator of the best atom-probe tomography (APT) experimental conditions compared with laser pulse energy. The thermal tails in the mass spectra decrease significantly, and the mass resolving power (mm) increases by 87.5 and 185.7% at full-width half-maximum and full-width tenth-maximum, respectively, as the laser pulse energy is increased from 5 to 30 pJ/pulse. The measured composition of this alloy depends on the charge-state ratio of the evaporated ions, and the most accurate composition is obtained when Ni2+/Ni+ is in the range of 0.3–20. The γ(f.c.c.)/γ'(L12) interface is quantitatively more diffuse when determined from the measured concentration profiles for higher laser pulse energies. Conclusions of the APT compositional and structural analyses utilizing the same suitable charge-state ratio are more comparable than those collected with the same laser pulse energy.

Copyright
Corresponding author
* Corresponding author. d-seidman@northwestern.edu
References
Hide All
Amouyal, Y. & Seidman, D.N. (2012). Atom-probe tomography of nickel-based superalloys with green or ultraviolet lasers: A comparative study. Microsc Microanal 18(5), 971981.
Bachhav, M., Danoix, R., Vurpillot, F., Hannoyer, B., Ogale, S. & Danoix, F. (2011). Evidence of lateral heat transfer during laser assisted atom probe tomography analysis of large band gap materials. Appl Phys Lett 99(8), 084101.
Blavette, D. & Bostel, A. (1984). Phase composition and long range order in γ′ phase of a nickel base single crystal superalloy CMSX2: An atom probe study. Acta Metall 32(5), 811816.
Brandon, D.G. (1966). The field evaporation of dilute alloys. Surf Sci 5(1), 137146.
Brandon, D.G. (1968). Field evaporation. In Field ion microscopy, Hren, J.J. & Ranganathan, S. (Eds.), pp. 2852. NewYork, NY: Plenum Press.
Bunton, J.H., Olson, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13(06), 418427.
Bunton, J.H., Olson, J.D., Lenz, D.R., Larson, D.J. & Kelly, T.F. (2010). Optimized laser thermal pulsing of atom probe tomography: LEAP 4000X. Microsc Microanal 16(S2), 1011.
Capdevila, C., Miller, M.K., Russell, K.F., Chao, J. & González-Carrasco, J.L. (2008). Phase separation in PM 2000™ Fe-base ODS alloy: Experimental study at the atomic level. Mater Sci Eng A 490(1–2), 277288.
Cerezo, A., Clifton, P.H., Galtrey, M.J., Humphreys, C.J., Kelly, T.F., Larson, D.J., Lozano-Perez, S., Marquis, E.A., Oliver, R.A., Sha, G., Thompson, K., Zandbergen, M. & Alvis, R.L. (2007 a). Atom probe tomography today. Mater Today 10(12), 3642.
Cerezo, A., Clifton, P., Gomberg, A. & Smith, G. (2007b). Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. Ultramicroscopy 107(9), 720725.
Cerezo, A., Smith, G.D.W. & Clifton, P.H. (2006). Measurement of temperature rises in the femtosecond laser pulsed three-dimensional atom probe. Appl Phys Lett 88(15), 154103.
Chbihi, A., Sauvage, X. & Blavette, D. (2012). Atomic scale investigation of Cr precipitation in copper. Acta Materialia 60(11), 45754585.
Chen, Y.M., Ohkubo, T., Kodzuka, M., Morita, K. & Hono, K. (2009). Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics. Scr Mater 61(7), 693696.
Clarke, A.J., Miller, M.K., Field, R.D., Coughlin, D.R., Gibbs, P.J., Clarke, K.D., Alexander, D.J., Powers, K.A., Papin, P.A. & Krauss, G. (2014). Atomic and nanoscale chemical and structural changes in quenched and tempered 4340 steel. Acta Materialia 77, 1727.
Danoix, F., Bémont, E., Maugis, P. & Blavette, D. (2006). Atom probe tomography I. Early stages of precipitation of NbC and NbN in ferritic steels. Adv Eng Mater 8(12), 12021205.
Diez, R.P. & Alonso, J.A. (2005). A density-functional study on the formation of Mo22+. J Chem Phys 123(13), 134313.
Franzreb, K., Sobers, R.C. Jr, Lörincık, J. & Williamsb, P. (2004). Formation of doubly positively charged diatomic ions of Mo. J Chem P hys 120(17), 79837986.
Gault, B., Danoix, F., Hoummada, K., Mangelinck, D. & Leitner, H. (2012 a). Impact of directional walk on atom probe microanalysis. Ultramicroscopy 113, 182191.
Gault, B., La Fontaine, A., Moody, M.P., Ringer, S.P. & Marquis, E.A. (2010). Impact of laser pulsing on the reconstruction in an atom probe tomography. Ultramicroscopy 110(9), 12151222.
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012b). Atom Probe Microscopy. New York, NY: Springer.
Heard, D.W., Boselli, J., Rioja, R., Marquis, E.A., Gauvin, R. & Brochu, M. (2013). Interfacial morphology development and solute trapping behavior during rapid solidification of an Al–Li–Cu alloy. Acta Mater 61(5), 15711580.
Hellman, O.C., Vandenbroucke, J.A., Rusing, J., Isheim, D. & Seidman, D.N. (2000). Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6(5), 437444.
Kellogg, G.L. (1981). Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J Appl Phys 52(8), 53205328.
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78(3), 031101.
Kingham, D.R. (1982). The post-ionization of field evaporated ions – A theoretical explanation of multiple charge states. Surf Sci 116(2), 273301.
Kolli, R.P. & Meisenkothen, F. (2014). The influence of experimental parameters and specimen geometry on the mass spectra of copper during pulsed-laser atom-probe tomography. Microsc Microanal 20(06), 17151726.
Krakauer, B.W. & Seidman, D.N. (1992). Systematic procedures for atom-probe field-ion microscopy studies of grain boundary segregation. Rev Sci Instrum 63(9), 40714079.
Krug, M.E., Dunand, D.C. & Seidman, D.N. (2011). Effects of Li additions on precipitation-strengthened Al–Sc and Al–Sc–Yb alloys. Acta Mater 59(4), 17001715.
Liu, H.F., Liu, H.M. & Tsong, T.T. (1986). Numerical calculation of the temperature distribution and evolution of the field-ion emitter under pulsed and continuous-wave laser irradiation. J Appl Phys 59(4), 13341340.
Mao, Z., Booth-Morrison, C., Sudbrack, C.K., Martin, G. & Seidman, D.N. (2012). Kinetic pathways for phase separation: An atomic-scale study in Ni–Al–Cr alloys. Acta Mater 60(4), 18711888.
Mao, Z., Sudbrack, C.K., Yoon, K.E., Martin, G. & Seidman, D.N. (2007). The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy. Nat Mater 6(3), 210216.
Marquis, E.A. & Gault, B. (2008). Determination of the tip temperature in laser assisted atom-probe tomography using charge state distributions. J Appl Phys 104(8), 084914.
Marquis, E.A. & Hyde, J.M. (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Mater Sci Eng R Rep 69(4), 3762.
Marquis, E.A., Yahya, N.A., Larson, D.J., Miller, M.K. & Todd, R.I. (2010). Probing the improbable: Imaging C atoms in alumina. Mater Today 13(10), 3436.
Miller, M.K. & Miller, M.K. (2000). Atom Probe Tomography: Analysis at the Atomic Level. New York, NY: Kluwer Academic/Plenum Publishers.
Miller, M.K. & Russell, K.F. (2007). Performance of a local electrode atom probe. Surf Interface Anal 39(2–3), 262267.
Miller, M.K. & Smith, G.D.W. (1981). An atom probe study of the anomalous field evaporation of alloys containing silicon. J Vac Sci Technol 19(1), 5762.
Moutanabbir, O., Isheim, D., Seidman, D.N., Kawamura, Y. & Itoh, K.M. (2011). Ultraviolet-laser atom-probe tomographic three-dimensional atom-by-atom mapping of isotopically modulated Si nanoscopic layers. Appl Phys Lett 98(1), 013111013111-3.
Mulholland, M.D. & Seidman, D.N. (2011 a). Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel. Acta Mater 59(5), 18811897.
Mulholland, M.D. & Seidman, D.N. (2011 b). Voltage-pulsed and laser-pulsed atom probe tomography of a multiphase high-strength low-carbon steel. Microsc Microanal 17(6), 950962.
Müller, M., Smith, G., Gault, B. & Grovenor, C.M. (2012). Compositional nonuniformities in pulsed laser atom probe tomography analysis of compound semiconductors. J Appl Phys 111(6), 064908.
Parratt, L.G. (1966). Probability and Experimental Errors in Science . New York: John Wiley.
Plotnikov, E.Y. (2015). Kinetic pathways for phase separation: An atomic scale study in Ni-Al alloys. PhD Thesis. Evanston, IL: Northwestern University.
Plotnikov, E.Y., Mao, Z., Noebe, R.D. & Seidman, D.N. (2014). Temporal evolution of the γ(fcc)/γ′(L12) interfacial width in binary Ni–Al alloys. Scr Mater 70, 5154.
Schreiber, D.K., Choi, Y.S., Liu, Y.Z., Chiaramonti, A.N., Seidman, D.N. & Petford-Long, A.K. (2011). Effects of elemental distributions on the behavior of MgO-based magnetic tunnel junctions. J Appl Phys 109(10), 103909.
Seidman, D.N. (2007). Three-dimensional atom-probe tomography: Advances and applications. Ann Rev Mater Res 37, 127158.
Seidman, D.N. & Stiller, K. (2009). An atom-probe tomography primer. MRS Bull 34(10), 717724.
Sha, G., Cerezo, A. & Smith, G.D.W. (2008). Field evaporation behavior during irradiation with picosecond laser pulses. Appl Phys Lett 92(4), 043503.
Shariq, A., Mutas, S., Wedderhoff, K., Klein, C., Hortenbach, H., Teichert, S., Kücher, P. & Gerstl, S. (2009). Investigations of field-evaporated end forms in voltage-and laser-pulsed atom probe tomography. Ultramicroscopy 109(5), 472479.
Shimizu, Y., Kawamura, Y., Uematsu, M., Tomita, M., Kinno, T., Okada, N., Kato, M., Uchida, H., Takahashi, M., Ito, H., Ishikawa, H., Ohji, Y., Takamizawa, H., Nagai, Y. & Itoh, K.M. (2011). Depth and lateral resolution of laser-assisted atom probe microscopy of silicon revealed by isotopic heterostructures. J Appl Phys 109(3), 36102.
Sudbrack, C.K. (2004). Decomposition Behavior In Model Ni-Al-Cr-X Superalloys: Temporal Evolution and Compositional Pathways on a Nanoscale. PhD Thesis. Evanston, IL: Northwestern University.
Tsong, T. (1986). Observation of doubly charged diatomic cluster ions of a metal. J Chem Phys 85(1), 639640.
Tu, Y., Mao, Z. & Seidman, D.N. (2012). Phase-partitioning and site-substitution patterns of molybdenum in a model Ni-Al-Mo superalloy: An atom-probe tomographic and first-principles study. Appl Phys Lett 101(12), 121910121910-4.
Vella, A., Deconihout, B., Marrucci, L. & Santamato, E. (2007). Femtosecond field ion emission by surface optical rectification. Phys Rev Lett 99(4), 046103.
Vurpillot, F., Houard, J., Vella, A. & Deconihout, B. (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D Appl Phys 42(12), 125502.
Wada, M. (1984). On the thermally activated field evaporation of surface atoms. Surf Sci 145(2), 451465.
Worrall, G.M. & Smith, G.D.W. (1986). The quantitative-analysis of copper in iron based alloys. J Phys 47(C-2), 245250.
Yamaguchi, Y., Takahashi, J. & Kawakami, K. (2009). The study of quantitativeness in atom probe analysis of alloying elements in steel. Ultramicroscopy 109(5), 541544.
Yao, L., Cairney, J., Zhu, C. & Ringer, S. (2011). Optimisation of specimen temperature and pulse fraction in atom probe microscopy experiments on a microalloyed steel. Ultramicroscopy 111(6), 648651.
Yoon, K.E., Seidman, D.N., Antoine, C. & Bauer, P. (2008). Atomic-scale chemical analyses of niobium oxide/niobium interfaces via atom-probe tomography. Appl Phys Lett 93(13), 132502.
Zheng, R.K., Moody, M.P., Gault, B., Liu, Z.W., Liu, H. & Ringer, S.P. (2009). On the understanding of the microscopic origin of the properties of diluted magnetic semiconductors by atom probe tomography. J Magn Magn Mater 321(8), 935943.
Zhou, Y., Booth-Morrison, C. & Seidman, D.N. (2008). On the field evaporation behavior of a model Ni-Al-Cr superalloy studied by picosecond pulsed-laser atom-probe tomography. Microsc Microanal 14(6), 571580.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed