Skip to main content
×
Home
    • Aa
    • Aa

Nanoprobe Fourier-Transform Photoabsorption Spectroscopy Using a Supercontinuum Light Source

  • Kiyoshiro Ishibe (a1), Satoru Nakada (a1), Yutaka Mera (a1) and Koji Maeda (a1)
Abstract
Abstract

A scheme of photoabsorption spectroscopy based on scanning tunneling microscopy (STM) has been developed by using a supercontinuum light as the wideband light source of a Fourier transform interferometer for spectroscopic measurements. The performance was demonstrated for a sample of GaAs. The proof-of-concept test showed that the use of the supercontinuum light instead of halogen lamps greatly enhances the signal-to-noise ratio due to the high brilliance of the supercontinuum light emitted from a small core of the photonic crystal fiber that enables tight focusing of the spectroscopy light onto the sample beneath the STM tip.

Copyright
Corresponding author
Corresponding author. E-mail: maeda@exp.t.u-tokyo.ac.jp
References
Hide All
Anderson M.S. (2000). Locally enhanced Raman spectroscopy with an atomic force microscope. Appl Phys Lett 76(21), 31303132.
Anderson N., Hartschuh A., Cronin S. & Novotny L. (2005). Nanoscale vibrational analysis of single-walled carbon nanotubes. J Am Chem Soc 127(8), 25332537.
Azoulay J., Deâbarre A., Richard A. & Tcheânio P. (1999). Field enhancement and apertureless near-field optical spectroscopy of single molecules. J Microsc 194(2-3), 486490.
Berweger S., Neacsu C.C., Mao Y., Zhou H., Wong S.S. & Raschke M.B. (2009). Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat Nanotechnol 4, 496499.
Bielefeldt H., Hörsch I., Krausch G., Lux-Steiner M., Mlynek J. & Marti O. (1994). Reflection-scanning near-field optical microscopy of opaque samples. Appl Phys A 59(2), 103108.
Bubendorff J.L., Pastreâ D. & Troyon M. (2000). Cathodoluminescence imaging and spectroscopy by near-field detection. J Microsc 199(3), 191196.
Carmichael E.S., Ballard J.B., Lyding J.W. & Gruebele M. (2007). Frequency-modulated, single-molecule absorption detected by scanning tunneling microscopy. J Phys Chem C 111(8), 33143321.
Dazzi A., Prazeres R., Glotin F. & Ortega J.M. (2005). Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt Lett 30 (18), 23882390.
Dudley J.M., Genty G. & Coen S. (2006). Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78(4), 11351184.
Dumas Ph., Gu M., Syrykh C., Hallimaoui A., Salvan F., Gimzewski J.K. & Schlittler R.R. (1994). Photon spectroscopy, mapping, and topography of 85% porous silicon. J Vac Sci Technol B 12(3), 20642066.
Felts J.R., Kjoller K., Prater C.B. & King W.P. (2010). Enhanced nanometer-scale infrared spectroscopy with a contact mode microcantilever having an internal resonator paddle. Proc IEEE 23rd Int. Conf. Micro Electro Mechanical Systems, Hong Kong, China, January 24–28, 2010, pp. 136–139.
Fujihira M., Monobe H., Muramatsu H. & Ataka T. (1994). Scanning near-field microscopy and nanoscopic fluorescence spectroscopy in combination with a non-contact scanning force microscope. Chem Lett 23, 657660.
Grafström S. (2002). Photoassisted scanning tunneling microscopy. J Appl Phys 91(4), 17171753.
Hammiche A., Pollock H.M., Reading M., Claybourn M., Turner P.H. & Jewkes K. (1999). Photothermal FT-IR spectroscopy: A step towards FT-IR microscopy at a resolution better than the diffraction limit. Appl Spectrosc 53(7), 810815.
Hayazawa N., Inouye Y., Sekkat Z. & Kawata S. (2000). Metallized tip amplification of near-field Raman scattering. Opt Comm 183, 333336.
Hida A., Mera Y. & Maeda K. (2001a). Electric field modulation spectroscopy by scanning tunneling microscopy with a nanometer-scale resolution. Appl Phys Lett 78(20), 30293031.
Hida A., Mera Y. & Maeda K. (2001b). Nanometer-scale measurements of photoabsorption spectra of individual defects in semiconductors. Appl Phys Lett 78(21), 31903192.
Huber A.J., Ziegler A., Köck T. & Hillenbrand R. (2009). Infrared nanoscopy of strained semiconductors. Nat Nanotechnol 4, 153157.
Jeong M.S., Kim J.Y., Kim Y.-W., White J.O., Suh E.-K., Hong C.-H. & Lee H.J. (2001). Spatially resolved photoluminescence in InGaN/GaN quantum wells by near-field scanning optical microscopy. Appl Phys Lett 79(7), 976978.
Klapetek P., Bujdák J. & Buršik J. (2010). Near-field scanning optical microscopy local luminescence studies of rhodamine dye. Cent Eur J Phys 8(3), 312317.
Naruse N., Mera Y., Fukuzawa Y., Nakamura Y., Ichikawa M. & Maeda K. (2007a). Fourier transform photoabsorption spectroscopy based on scanning tunneling microscopy. J Appl Phys 102(11), 114301-1–6.
Naruse N., Mera Y. & Maeda K. (2007b). Response analysis for identifying the origin of photo-modulated current contrasts in scanning tunneling microscopic imaging semiconductor surfaces. Ultramicroscopy 107(8), 568574.
Naruse N., Mera Y., Nakamura Y., Ichikawa M. & Maeda K. (2009). Fourier-transform photoabsorption spectroscopy of quantum-confinement effects in individual GeSn nanodots. Appl Phys Lett 94(9), 093104-1–3.
Okuda T., Eguchi T., Akiyama K., Harasawa A., Kinoshita T., Hasegawa Y., Kawamori M., Haruyama Y. & Matsui S. (2009). Nanoscale chemical imaging by scanning tunneling microscopy assisted by synchrotron radiation. Phys Rev Lett 102(10), 105503-1–4.
Pettinger B., Ren B., Picardi G., Schuster R. & Ertl G. (2004). Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys Rev Lett 92(9), 096101-1–4.
Saito A., Takagi Y., Takahashi K., Hosokawa H., Hanai K., Tanaka T., Akai-kasaya M., Tanaka Y., Shin S., Ishikawa T., Kuwahara Y. & Aono M. (2008). Nanoscale elemental identification by synchrotron-radiation-based scanning tunneling microscopy. Surf Interf Anal 40(6-7), 10331036.
Takeuchi O., Aoyama M., Oshima R., Okada Y., Oigawa H., Sano N., Shigekawa H., Morita R. & Yamashita M. (2004). Probing subpicosecond dynamics using pulsed laser combined scanning tunneling microscopy. Appl Phys Lett 85(15), 32683270.
Toda Y., Shinomori S., Suzuki K. & Arakawa Y. (1998). Near-field optical spectroscopy of self-assembled quantum dots: NSOM apparatus for measuring the features of single dots. Solid-State Electron 42, 10831086.
Ushioda S., Uehara Y. & Kuwahara M. (1992). STM light emission spectroscopy of Au film. Appl Surf Sci 60/61, 448453.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 59 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.