Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T06:23:08.770Z Has data issue: false hasContentIssue false

Nanoscale Three-Dimensional Microstructural Characterization of an Sn-Rich Solder Alloy Using High-Resolution Transmission X-Ray Microscopy (TXM)

Published online by Cambridge University Press:  18 July 2016

Chandrashekara S. Kaira
Affiliation:
Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
Carl R. Mayer
Affiliation:
Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
V. De Andrade
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Building 401, 9700 S. Cass Avenue, Argonne, IL 60439, USA
Francesco De Carlo
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Building 401, 9700 S. Cass Avenue, Argonne, IL 60439, USA
Nikhilesh Chawla*
Affiliation:
Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
*
*Corresponding author. nchawla@asu.edu
Get access

Abstract

Three-dimensional (3D) nondestructive microstructural characterization was performed using full-field transmission X-ray microscopy on an Sn-rich alloy, at a spatial resolution of 60 nm. This study highlights the use of synchrotron radiation along with Fresnel zone plate optics to perform absorption contrast tomography for analyzing nanoscale features of fine second phase particles distributed in the tin matrix, which are representative of the bulk microstructure. The 3D reconstruction was also used to quantify microstructural details of the analyzed volume.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bansal, R.K., Kubis, A., Hull, R. & Fitz-Gerald, J.M. (2006). High-resolution three-dimensional reconstruction: A combined scanning electron microscope and focused ion-beam approach. J Vac Sci Technol B Microelectron Nanometer Struct 24, 554.Google Scholar
Chao, W., Harteneck, B.D., Liddle, J.A., Anderson, E.H. & Attwood, D.T. (2005). Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 12101213.CrossRefGoogle Scholar
Chawla, N. (2009). Thermomechanical behaviour of environmentally benign Pb-free solders. Int Mater Rev 54, 368384.Google Scholar
Drevet, B., Camel, D., Dupuy, M. & Favier, J.J. (1996). Microstructure of the Sn—Cu6Sn5 fibrous eutectic and its modification by segregation. Acta Mater 44, 40714084.CrossRefGoogle Scholar
Fix, A.R., López, G.A, Brauer, I., Nüchter, W. & Mittemeijer, E.J. (2005). Microstructural Development of Sn-Ag-Cu Solder Joints. J Electron Mater 34, 137142.Google Scholar
Gorelick, S., Vila-Comamala, J., Guzenko, V.A., Barrett, R., Salomé, M. & David, C. (2011). High-efficiency fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating. J Synchrotron Radiat 18, 442446.Google Scholar
Grew, K.N., Chu, Y.S., Yi, J., Peracchio, A.A., Izzo, J.R., Hwu, Y., De Carlo, F. & Chiu, W.K.S. (2010). Nondestructive nanoscale 3D elemental mapping and analysis of a solid oxide fuel cell anode. J Electrochem Soc 157, B783B792.Google Scholar
Gürsoy, D., De Carlo, F., Xiao, X. & Jacobsen, C. (2014). TomoPy: A framework for the analysis of synchrotron tomographic data. J Synchrotron Radiat 21, 11881193.CrossRefGoogle ScholarPubMed
Hruby, P., Singh, S.S., Williams, J.J., Xiao, X., De Carlo, F. & Chawla, N. (2014). Fatigue crack growth in SiC particle reinforced Al alloy matrix composites at high and low R-ratios by in situ X-ray synchrotron tomography. Int J Fatigue 68, 136143.Google Scholar
Huang, R. & Bilderback, D.H. (2006). Single-bounce monocapillaries for focusing synchrotron radiation: Modeling, measurements and theoretical limits. J Synchrotron Radiat 13, 7484.Google Scholar
Huang, R., Szebenyi, T., Pfeifer, M., Woll, A., Smilgies, D.-M., Finkelstein, K., Dale, D., Wang, Y., JVila-Comamala, J., Gillilan, R., Cook, M. & Bilderback, D.H. (2014). Application of CHESS single-bounce capillaries at synchrotron beamlines. J Phys Conf Ser 493, 012034.CrossRefGoogle Scholar
Kim, K.S., Huh, S.H. & Suganuma, K. (2003). Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints. J Alloy Compd 352, 226236.Google Scholar
Kizilyaprak, C., Bittermann, A.G., Daraspe, J. & Humbel, B.M. (2014). FIB-SEM tomography in biology. Methods Mol Biol 1117, 541558.Google Scholar
Lee, H.-T. & Chen, Y.-F. (2011). Evolution of Ag3Sn intermetallic compounds during solidification of eutectic Sn–3.5Ag solder. J Alloy Compd 509, 25102517.Google Scholar
Lu, H.Y., Balkan, H. & Ng, K.Y.S. (2006). Microstructure evolution of the Sn-Ag-y%Cu interconnect. Microelectron Reliab 46, 10581070.Google Scholar
Maleki, M., Cugnoni, J. & Botsis, J. (2013). Microstructure-based modeling of the ageing effect on the deformation behavior of the eutectic micro-constituent in SnAgCu lead-free solder. Acta Mater 61, 103114.Google Scholar
Midgley, P.A. & Dunin-Borkowski, R.E. (2009). Electron tomography and holography in materials science. Nat Mater 8, 271280.Google Scholar
Miller, M.K. & Kenik, E.A. (2004). Atom probe tomography: A technique for nanoscale characterization. Microsc Microanal 10, 336341.CrossRefGoogle ScholarPubMed
Ochoa, F., Williams, J.J. & Chawla, N. (2003). The Effects of Cooling Rate on Microstructure and Mechanical Behavior of Sn-3.5Ag Solder. J Electron Mater 55, 5660.Google Scholar
Requena, G., Cloetens, P., Altendorfer, W., Poletti, C., Tolnai, D., Warchomicka, F. & Degischer, H.P. (2009). Sub-micrometer synchrotron tomography of multiphase metals using Kirkpatrick-Baez optics. Scr Mater 61, 760763.Google Scholar
Schroer, C.G. (2006). Focusing hard X rays to nanometer dimensions using Fresnel zone plates. Phys Rev B Condens Matter 74, 14.Google Scholar
Shen, J., Liu, Y.C. & Gao, H.X. (2007). Formation of bulk Cu6Sn5 intermetallic compounds in Sn–Cu lead-free solders during solidification. J Mater Sci 42, 53755380.Google Scholar
Sidhu, R.S. & Chawla, N. (2008). Microstructure characterization and creep behavior of Pb-free Sn-rich solder alloys: Part I. Microstructure characterization of bulk solder and solder/copper joints. Metall Mater Trans A 39, 340348.Google Scholar
Singh, S.S., Williams, J.J., Hruby, P., Xiao, X., Carlo, F. De & Chawla, N. (2014 a). In situ experimental techniques to study the mechanical behavior of materials using X-ray synchrotron tomography. Integrat Mater Manuf Innov 3, 114.Google Scholar
Singh, S.S., Williams, J.J., Lin, M.F., Xiao, X., De Carlo, F. & Chawla, N. (2014 b). In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography. Mater Res Lett 2, 217220.Google Scholar
Toda, H., Uesugi, K., Takeuchi, A., Minami, K., Kobayashi, M. & Kobayashi, T. (2006). Three-dimensional observation of nanoscopic precipitates in an aluminum alloy by microtomography with Fresnel zone plate optics. Appl Phys Lett 89, 143112-1:3.CrossRefGoogle Scholar
Villinger, C., Gregorius, H., Kranz, C., Höhn, K., Münzberg, C., Von Wichert, G., Mizaikoff, B., Wanner, G. & Walther, P. (2012). FIB/SEM tomography with TEM-like resolution for 3D imaging of high-pressure frozen cells. Histochem Cell Biol 138, 549556.Google Scholar
Yazzie, K.E., Williams, J.J., Phillips, N.C., De Carlo, F. & Chawla, N. (2012). Multiscale microstructural characterization of Sn-rich alloys by three dimensional (3D) X-ray synchrotron tomography and focused ion beam (FIB) tomography. Mater Charact 70, 3341.Google Scholar