Skip to main content Accessibility help
×
Home

Quantification of Sample Thickness and In-Concentration of InGaAs Quantum Wells by Transmission Measurements in a Scanning Electron Microscope

  • T. Volkenandt (a1), E. Müller (a1) (a2), D.Z. Hu (a3), D.M. Schaadt (a3) and D. Gerthsen (a1) (a2)...

Abstract

High-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images of electron-transparent samples show dominant atomic number (Z-) contrast with a high lateral resolution. HAADF STEM at low electron energies <30 keV is applied in this work for quantitative composition analyses of InGaAs quantum wells. To determine the local composition, normalized experimental image intensities are compared with results of Monte Carlo simulations. For verification of the technique, InGaAs/GaAs quantum-well structures with known In concentration are used. Transmission electron microscopy samples with known thickness are prepared by the focused-ion-beam technique. The method can be extended to other material systems and is particularly promising for the analysis of materials that are sensitive toward knock-on damage.

Copyright

Corresponding author

Corresponding author. E-mail: tobias.volkenandt@kit.edu

References

Hide All
Crewe, A.V. (1984). An introduction to STEM. J Ultra Mol Struct R 88, 94104.
Croitoru, M.D., van Dyck, D., Aert, S.W., Bals, S. & Verbeeck, J. (2006). An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images. Ultramicroscopy 53, 319324.
Harscher, A., Lichte, H. & Mayer, J. (1997). Interference experiments with energy filtered electrons. Ultramicroscopy 69, 201209.
Hartel, P., Rose, H. & Dinges, C. (1996). Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93114.
Heinrich, K. (1981). Electron Beam X-Ray Microanalysis. New York: Van Nostrand Reinhold Co.
Hillyard, S. & Silcox, J. (1993). Thickness effects in ADF STEM zone axis images. Ultramicroscopy 52, 325334.
Howie, A. (1979). Electron microscope/image contrast and localized signal selection techniques. J Microsc 117, 1123.
Joy, D.C. & Luo, S. (1989). An empirical stopping power relationship for low-energy electrons. Scanning 11, 176180.
Klenov, D.O. & Stemmer, S. (2006). Contributions to the contrast in experimental high-angle annular dark-field images. Ultramicroscopy 106, 889901.
Krzyzanek, V., Nüsse, H. & Reichelt, R. (2004). Quantitative microscopy with a high-resolution FESEM in the transmission mode. EMC 2004, Proceedings of the 13th European Microscopy Congress, 1: Instrumentation and Methodology, August 22–27, 2004, Antwerp, Belgium.
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100, 206101.
LeBeau, J.M. & Stemmer, S. (2008). Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108, 16531658.
Liu, J. & Cowley, J.M. (1991). Imaging with high-angle scattered electrons and secondary electrons in STEM. Ultramicroscopy 37, 5071.
Merli, P.G., Corticelli, F. & Morandi, V. (2002). Images of dopant profiles in low-energy scanning transmission electron microscopy. Appl Phys Lett 81, 45354537.
Merli, P.G., Morandi, V. & Corticelli, F. (2003). Backscattered electron imaging and scanning transmission electron microscopy imaging of multi-layers. Ultramicroscopy 94, 8998.
Merli, P. & Morandi, V. (2005). Low-energy STEM of multilayers and dopant profiles. Microsc Microanal 11, 97104.
Morandi, V., Merli, P.G. & Quaglino, D. (2007). Scanning electron microscopy of thinned specimens: From multilayers to biological samples. Appl Phys Lett 90, 163113.
Nellist, P. & Pennycook, S. (1999). Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111124.
Potapov, P., Lichte, H., Verbeeck, J. & van Dyck, D. (2006). Experiments on inelastic electron holography. Ultramicroscopy 106, 10121018.
Potapov, P., Verbeeck, J., Schattschneider, P., Lichte, H. & van Dyck, D. (2007). Inelastic electron holography as a variant of the Feynman thought experiment. Ultramicroscopy 107, 559567.
Reimer, L. (1998). Scanning Electron Microscopy, 2nd ed.Heidelberg, Germany: Springer.
Ritchie, N.W.M. (2005). A new Monte Carlo application for complex sample geometries. Surf Interface Anal 37, 10061011.
Rosenauer, A., Fischer, U., Gerthsen, D. & Förster, A. (1998). Composition evaluation by lattice fringe analysis. Ultramicroscopy 72, 121133.
Rosenauer, A. & Schowalter, M. (2008). STEMSIM—A new software tool for simulation of STEM HAADF Z-contrast imaging. Microscopy of Semiconductor Materials: Proceedings of the 15th Conference, April 2–5, 2007, Cambridge, U.K., p. 169.
Treacy, M.M.J. & Gibson, J.M. (1993). Coherence and multiple scattering in “Z-contrast” images. Ultramicroscopy 52, 3153.
Verbeeck, J., van Dyck, D., Lichte, H., Potapov, P. & Schattschneider, P. (2005). Plasmon holographic experiments: Theoretical framework. Ultramicroscopy 102, 239255.
Wall, J., Langmore, J., Isaacson, M. & Crewe, A.V. (1974). Scanning transmission electron microscopy at high resolution. Pro Natl Acad Sci USA 71, 15.
Walther, T. (2005). A new experimental procedure to quantify annular dark-field images in STEM. J Microsc 221, 137144.
Wang, Z.L. & Cowley, J.M. (1989). Simulating high-angle annular dark-field STEM images including inelastic thermal diffuse scattering. Ultramicroscopy 31, 437454.

Keywords

Quantification of Sample Thickness and In-Concentration of InGaAs Quantum Wells by Transmission Measurements in a Scanning Electron Microscope

  • T. Volkenandt (a1), E. Müller (a1) (a2), D.Z. Hu (a3), D.M. Schaadt (a3) and D. Gerthsen (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed