Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 24
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Machado, M. Souza, S. M. A. Guelli U. Ferreira Morgado, A. Caldas, P. G. Ptak, F. and Prioli, R. 2016. Influence of cellulose fibers and fibrils on nanoscale friction in kraft paper. Cellulose, Vol. 23, Issue. 4, p. 2653.

    Nordli, Henriette Rogstad Chinga-Carrasco, Gary Rokstad, Anne Mari and Pukstad, Brita 2016. Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells. Carbohydrate Polymers, Vol. 150, p. 65.

    Powell, Lydia C. Khan, Saira Chinga-Carrasco, Gary Wright, Chris J. Hill, Katja E. and Thomas, David W. 2016. An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Carbohydrate Polymers, Vol. 137, p. 191.

    Silva, Rafael M. Pereira, Fabiano V. Mota, Felipe A.P. Watanabe, Evandro Soares, Suelleng M.C.S. and Santos, Maria Helena 2016. Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals. Materials Science and Engineering: C, Vol. 58, p. 389.

    Tehrani, Zari Nordli, Henriette Rogstad Pukstad, Brita Gethin, David T. and Chinga-Carrasco, Gary 2016. Translucent and ductile nanocellulose-PEG bionanocomposites—A novel substrate with potential to be functionalized by printing for wound dressing applications. Industrial Crops and Products,

    Tonoli, G. H. D. Holtman, K. M. Glenn, G. Fonseca, A. S. Wood, D. Williams, T. Sa, V. A. Torres, L. Klamczynski, A. and Orts, W. J. 2016. Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose, Vol. 23, Issue. 2, p. 1239.

    Das, Mahuya and Bhattacharyya, Rupa 2015. Polymer Nanocomposites Based on Inorganic and Organic Nanomaterials.

    Djafari Petroudy, Seyed Rahman Ghasemian, Ali Resalati, Hossein Syverud, Kristin and Chinga-Carrasco, Gary 2015. The effect of xylan on the fibrillation efficiency of DED bleached soda bagasse pulp and on nanopaper characteristics. Cellulose, Vol. 22, Issue. 1, p. 385.

    Gamelas, José A.F. Pedrosa, Jorge Lourenço, Ana F. Mutjé, Peré González, Israel Chinga-Carrasco, Gary Singh, Gurvinder and Ferreira, Paulo J.T. 2015. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Micron, Vol. 72, p. 28.

    Josefsson, Gabriella Chinga-Carrasco, Gary and Gamstedt, E. Kristofer 2015. Elastic models coupling the cellulose nanofibril to the macroscopic film level. RSC Adv., Vol. 5, Issue. 71, p. 58091.

    Miettinen, Arttu Ekman, Axel Chinga-Carrasco, Gary and Kataja, Markku 2015. Measuring intrinsic thickness of rough membranes: application to nanofibrillated cellulose films. Journal of Materials Science, Vol. 50, Issue. 21, p. 6926.

    Syverud, Kristin Pettersen, Sigurd R. Draget, Kurt and Chinga-Carrasco, Gary 2015. Controlling the elastic modulus of cellulose nanofibril hydrogels—scaffolds with potential in tissue engineering. Cellulose, Vol. 22, Issue. 1, p. 473.

    Tehrani, Abbas and Babaabbasi, Mohammad 2015. Cellulose-Based Graft Copolymers.

    Lavoine, Nathalie Desloges, Isabelle Khelifi, Bertine and Bras, Julien 2014. Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper. Journal of Materials Science, Vol. 49, Issue. 7, p. 2879.

    Miettinen, Arttu Chinga-Carrasco, Gary and Kataja, Markku 2014. Three-Dimensional Microstructural Properties of Nanofibrillated Cellulose Films. International Journal of Molecular Sciences, Vol. 15, Issue. 4, p. 6423.

    Mikczinski, Manuel R. Josefsson, Gabriella Chinga-Carrasco, Gary Gamstedt, E. Kristofer and Fatikow, Sergej 2014. Nanorobotic Testing to Assess the Stiffness Properties of Nanopaper. IEEE Transactions on Robotics, Vol. 30, Issue. 1, p. 115.

    2014. Cellulose and Cellulose Derivatives in the Food Industry.

    Alexandrescu, Laura Syverud, Kristin Gatti, Antonietta and Chinga-Carrasco, Gary 2013. Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose, Vol. 20, Issue. 4, p. 1765.

    Chinga-Carrasco, Gary 2013. Optical methods for the quantification of the fibrillation degree of bleached MFC materials. Micron, Vol. 48, p. 42.

    Chinga-Carrasco, Gary Averianova, Natalia Gibadullin, Marat Petrov, Vladimir Leirset, Ingebjørg and Syverud, Kristin 2013. Micro-structural characterisation of homogeneous and layered MFC nano-composites. Micron, Vol. 44, p. 331.


Quantitative Electron Microscopy of Cellulose Nanofibril Structures from Eucalyptus and Pinus radiata Kraft Pulp Fibers

  • Gary Chinga-Carrasco (a1), Yingda Yu (a2) and Ola Diserud (a3)
  • DOI:
  • Published online: 11 July 2011

This work comprises the structural characterization of Eucalyptus and Pinus radiata pulp fibers and their corresponding fibrillated materials, based on quantitative electron microscopy techniques. Compared to hardwood fibers, the softwood fibers have a relatively open structure of the fiber wall outer layers. The fibrillation of the fibers was performed mechanically and chemi-mechanically. In the chemi-mechanical process, the pulp fibers were subjected to a TEMPO-mediated oxidation to facilitate the homogenization. Films were made of the fibrillated materials to evaluate some structural properties. The thicknesses and roughnesses of the films were evaluated with standardized methods and with scanning electron microscopy (SEM), in backscattered electron imaging mode. Field-emission SEM (FE-SEM) and transmission electron microscopy (TEM) were performed to quantify the nanofibril morphology. In this study, we give additional and significant evidences about the suitability of electron microscopy techniques for quantification of nanofibril structures. In addition, we conclude that standard methods are not suitable for estimating the thickness of films having relatively rough surfaces. The results revealed significant differences with respect to the morphology of the fibrillated material. The differences are due to the starting raw material and to the procedure applied for the fibrillation.

Corresponding author
Corresponding author. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

K. Abe , S. Iwamoto & H. Yano (2007). Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8, 32763278.

S. Ahola , J. Salmi , L.-S. Johansson , J. Laine & M. Österberg (2008). Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9, 12731282.

G. Chinga , P.O. Johnsen , R. Dougherty , E. Lunden-Berli & J. Walter (2007a). Quantification of the 3D microstructure of SC surfaces. J Microsc 227(3), 254265.

G. Chinga , O. Solheim & K. Mörseburg (2007b). Cross-sectional dimensions of fiber and pore networks based on Euclidean distance maps. Nordic Pulp Paper Res J 22(4), 500507.

G. Chinga-Carrasco , P.O. Johnsen & K. Øyaas (2010). Structural quantification of wood fibre surfaces—Morphological effects of pulping and enzymatic treatment. Micron 41(6), 648659.

G. Chinga-Carrasco & K. Syverud (2010). Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated cellulose. J Nanoparticle Res 12(3), 841851.

R.F. Egerton , P. Li & M. Malac (2004). Radiation damage in the TEM and SEM. Micron 35(6), 399409.

Ø. Eriksen , K. Syverud & Ø. Gregersen (2008). The use of microfibrillated cellulose produced from kraft pulp as a strength enhancer in TMP paper. Nord Pulp Paper Res J 23(3), 299304.

A. Frey-Wyssling (1954). The fine structure of cellulose microfibrils. Science 119, 8082.

H. Fukuzumi , T. Saito , T. Iwata , Y. Kumamoto & A. Isogai (2009). Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10, 162165.

A.N. Heyn (1969). The elementary fibril and supermolecular structure of cellulose in soft wood fiber. J Ultrastructure Res 26, 5268.

H. Meier (1962). Chemical and morphological aspects of the fine structure of wood. Pure Appl Chem 5, 3752.

M. Pääkkö , M. Ankefors , H. Kosonen , A. Nykänen , S. Ahola , M. Österberg , J. Ruokolainen , J. Laine , P.T. Larsson , O. Ikkala & T. Lindström (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8, 19341941.

T. Saito , Y. Nishiyama , J.L. Putaux , M. Vignon & A. Isogai (2006). Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6), 16871691.

M.Ö. Seydibeyoglu & K. Oksman (2008). Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Comp Techn 68, 908914.

W. Stelte & A.R. Sanadi (2009). Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48, 1121111219.

K. Syverud , G. Chinga-Carrasco , J. Toledo & P.G. Toledo (2011). A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohyd Polym 84(3), 10331038.

K. Syverud & P. Stenius (2009). Strength and barrier properties of MFC films. Cellulose 16(1), 7585.

T. Tanigushi & K. Okamura (1998). New films produced from microfibrillated natural fibres. Polym Int 47, 291294.

M. Ziabari , V. Mottaghitalab , T. Scott , A.K. McGovern & A. Haghi (2007). A new image analysis based method for measuring electrospun nanofiber diameter. Nanoscale Res Lett 2, 597600.

T. Zimmermann , N. Bordeanu & E. Strub (2010). Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohyd Polym 79(4), 10861093.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *