Skip to main content Accessibility help
×
Home

Quantitative High-Resolution Transmission Electron Microscopy of Single Atoms

  • Björn Gamm (a1), Holger Blank (a1), Radian Popescu (a1), Reinhard Schneider (a1), André Beyer (a2), Armin Gölzhäuser (a2) and Dagmar Gerthsen (a1)...

Abstract

Single atoms can be considered as the most basic objects for electron microscopy to test the microscope performance and basic concepts for modeling image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum, molybdenum, and titanium atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate that induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weickenmeier-Kohl and Doyle-Turner form factors. Experimental and simulated image intensities are in quantitative agreement on an absolute intensity scale, which is provided by the vacuum image intensity. This demonstrates that direct testing of basic properties such as form factors becomes feasible.

Copyright

Corresponding author

Corresponding author. E-mail: gamm@kit.edu

References

Hide All
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617620.
Cowley, J.M. (1992). International Tables for Crystallography. Vol. C. Hoboken, NJ: Wiley, Inc.
Cowley, J.M. & Moodie, A.F. (1957). The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr 10, 609619.
Crewe, A.V., Wall, J. & Langmore, J. (1970). Visibility of single atoms. Science 12, 13381340.
Doyle, P.A. & Turner, P.S. (1968). Relativistic Hartree-Fock X-ray and electron scattering factors. Acta Crystallogr 24, 390397.
Iijima, S. (1977). Observation of single and clusters of atoms in bright field electron microscopy. Optik 48, 193214.
Kirkland, A.I., Meyer, R.R. & Chang, L.Y. (2006). Local measurement and computational refinement of aberrations for HRTEM. Microsc Microanal 12, 461468.
Koizumi, H., Oshima, Y., Kondo, Y. & Takayanagi, K. (2001). Quantitative high-resolution microscopy on a suspended chain of gold atoms. Ultramicroscopy 88(1), 1724.
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T. & Pennycook, S.J. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464(7288), 571574.
Meyer, J., Girit, C.O., Crommie, M.F. & Zettl, A. (2008). Imaging and dynamics of light atoms and molecules on graphene. Nature 454, 319322.
Meyer, J.C., Kurasch, S., Park, H.J., Skakalova, V., Künzel, D., Gross, A., Chuvilin, A., Algara-Siller, G., Roth, S., Iwasaki, T., Starke, U., Smet, J.H. & Kaiser, U. (2011). Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nat Mater 10(3), 209215.
Ohnishi, H., Kondo, Y. & Takayanagi, K. (1998). Quantized conductance through individual rows of suspended gold atoms. Nature 395(6704), 780783.
Rosenauer, A. & Schowalter, M. (2006). STEMsim program. Available at http://www.ifp.unibremen.de/tem/stemsim.html.
Sears, V.F. & Shelley, S.A. (1991). Debye-Waller factors for elemental crystals. Acta Crystallogr A 47, 441446.
Thust, A. (2009). High-resolution transmission electron microscopy on an absolute contrast scale. Phys Rev Lett 102, 220801.
Turchanin, A., Käfer, D., El-Desawy, M., Wöll, C., Witte, G. & Gölzhäuser, A. (2009). A molecular mechanisms of electron-induced cross-linking in aromatic SAMs. Langmuir 25(13), 73427352.
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.
Wade, R.H. & Frank, J. (1977). Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread. Optik 49, 8192.
Weickenmeier, A. & Kohl, H. (1991). Computation of absorptive form factors for high-energy electron diffraction. Acta Crystallogr 47, 590597.
Weickenmeier, A., Nüchter, W. & Mayer, J. (1995). Quantitative characterization of point spread function and detection quantum efficiency for a YAG scintillator slow scan CCD camera. Optik (Stuttgart) 99(4), 99147.

Keywords

Quantitative High-Resolution Transmission Electron Microscopy of Single Atoms

  • Björn Gamm (a1), Holger Blank (a1), Radian Popescu (a1), Reinhard Schneider (a1), André Beyer (a2), Armin Gölzhäuser (a2) and Dagmar Gerthsen (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed