Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T04:18:27.369Z Has data issue: false hasContentIssue false

Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns

Published online by Cambridge University Press:  08 August 2017

Patrick G. Callahan*
Affiliation:
Materials Department, University of California Santa Barbara, Santa Barbara, CA93106-5050USA
McLean P. Echlin
Affiliation:
Materials Department, University of California Santa Barbara, Santa Barbara, CA93106-5050USA
Tresa M. Pollock
Affiliation:
Materials Department, University of California Santa Barbara, Santa Barbara, CA93106-5050USA
Marc De Graef
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA15213-3890, USA
*
*Corresponding author. pcallahan@engineering.ucsb.edu
Get access

Abstract

We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

Type
Materials Science Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, M.N., Blaokman, M. & Pashley, D.W. (1954). High-angle Kikuchi patterns. Proc R Soc Lond A Math Phys Eng Sci 221, 224242.Google Scholar
Altmann, F., Beyersdorfer, J., Sohisohka, J., Krause, M., Franz, G. & Kwakman, L. (2012). Cross section analysis of Cu filled TSVs based on high throughput plasma-FIB milling. In Proceedings of the 38th International Symposium on Testing and Failure Analysis, Phoenix, pp. 39–43. Materials Park, OH: ASM International.Google Scholar
Amoruso, S., Bruzzese, R., Wang, X., Nedialkov, N.N. & Atanasov, P.A. (2007). Femtosecond laser ablation of nickel in vacuum. J Phys D Appl Phys 40, 331.Google Scholar
Bargheer, M., Zhavoronkov, N., Gritsai, Y., Woo, J.C., Kim, D.S., Wo-erner, M. & Elsaesser, T. (2004). Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction. Science 306, 17711773.Google Scholar
Bonse, J., Rosenfeld, A. & Krüger, J. (2009). On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J Appl Phys 106, 104910.Google Scholar
Callahan, P.G. & DeGraef, M. (2013). Dynamical electron backscatter diffraction patterns. Part I: Pattern simulations. Microsc Microanal 19, 12551265.CrossRefGoogle ScholarPubMed
Carey, J.E., Crouoh, C.H. & Mazur, E. (2003). Femtosecond-laser-assisted microstructuring of silicon surfaces. Opt Photonics News 14, 3236.CrossRefGoogle Scholar
Chapman, M., Callahan, P.G. & DeGraef, M. (2016). Determination of sample surface topography using electron back-scatter diffraction patterns. Scripta Mater 120, 2326.Google Scholar
Desbois, G., Urai, J.L., Pérez-Willard, F., Radi, Z., Offern, S., Burkart, I., Kukla, P.A. & Wollenberg, U. (2013). Argon broad ion beam tomography in a cryogenic scanning electron microscope: A novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid. J Microsc 249, 215235.Google Scholar
Dillon, S.J. & Rohrer, G.S. (2009). Characterization of the grain-boundary character and energy distributions of yttria using automated serial sectioning and EBSD in the FIB. J Am Ceram Soc 92, 15801585.Google Scholar
Douglas, J.E., Eohlin, M.P., Lenthe, W.C., Seshadri, R. & Pollock, T.M. (2015). Three-dimensional multimodal imaging and analysis of biphasic microstructure in a Ti-Ni-Sn thermoelectric material. APL Mater 3, 096107.Google Scholar
Durou, J.D., Falcone, M. & Sagona, M. (2008). Numerical methods for shape-from-shading: A new survey with benchmarks. Comput Vis Image Understanding 109, 2243.Google Scholar
Echlin, M.P., Mottura, A., Torbet, C.J. & Pollock, T.M. (2012). A new TriBeam system for three-dimensional multimodal materials analysis. Rev Sci Instrum 83, 023701.Google Scholar
Echlin, M.P., Mottura, A, Wang, M., Mignone, P.J., Riley, D.P., Franks, G.V. & Pollock, T.M. (2014). Three-dimensional characterization of the permeability of W-Cu composites using a new TriBeam technique. Acta Mater 64, 307315.Google Scholar
Echlin, M.P., Straw, M., Randolph, S., Filevioh, J. & Pollock, T.M. (2015). The TriBeam system: Femtosecond laser ablation in situ SEM. Mater Charact 100, 112.CrossRefGoogle Scholar
Evangelidis, G.D. & Psarakis, E.Z. (2008). Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans Pattern Anal 30, 18581865.Google Scholar
Feng, Q., Pioard, Y.N., Liu, H., Yalisove, S.M., Mourou, G. & Pollock, T.M. (2005). Femtosecond laser micromachining of a single-crystal superalloy. Script Mater 53, 511516.Google Scholar
Feng, Q., Pioard, Y.N., McDonald, J.P., Rompay, P.A.V., Yalisove, S.M. & Pollock, T.M. (2006). Femtosecond laser machining of single-crystal superalloys through thermal barrier coatings. Mater Sci Eng A 430, 203207.CrossRefGoogle Scholar
Frankot, R.T. & Chellappa, R. (1988). A method for enforcing integrability in shape from shading algorithms. IEEE Trans Pattern Anal 10, 439451.Google Scholar
Giannuzzi, L.A., Kempshall, B.W., Sohwarz, S.M., Lomness, J.K., Prenitzer, B.I. & Stevie, F.A. (2005). FIB Lift-Out Specimen Preparation Techniques. Boston, MA: Springer.CrossRefGoogle Scholar
Horn, B.K.P. & Brooks, M.J. (1989). Shape from Shading. Cambridge, MA: MIT Press.Google Scholar
Huang, M., Zhao, F., Cheng, Y., Xu, N. & Xu, Z. (2009). Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano 3, 40624070.Google Scholar
Jackson, J.B., Mourou, M., Whitaker, J.F. III, Duling, I.N., Williamson, S.L., Menu, M. & Mourou, G.A. (2008). Terahertz imaging for non-destructive evaluation of mural paintings. Optics Communications 281, 527532.Google Scholar
Jorgensen, D.J., Titus, M.S. & Pollock, T.M. (2015). Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl. Appl Surf Sci 353, 700707.Google Scholar
Joy, D.C. (1995). Monte Carlo Modeling for Electron Microscopy and Microanalysis. New York: Oxford University Press.Google Scholar
Joy, D.C. & Luo, S. (1989). An empirical stopping power relationship for low-energy electrons. Scanning 11, 176180.Google Scholar
Lenthe, W.C., Eohlin, M.P., Trenkle, A., Syha, M., Gumbsoh, P. & Pollock, T.M. (2015). Quantitative voxel-to-voxel comparison of TriBeam and DCT strontium titanate three-dimensional data sets. J Appl Crystallogr 48, 10341046.Google Scholar
Ma, S., McDonald, J.P., Tryon, B., Yalisove, S.M. & Pollock, T.M. (2007). Femtosecond laser ablation regimes in a single-crystal superalloy. Metall Mater Trans A 38, 23492357.Google Scholar
McDonald, J.P., Das, D.K., Nees, J.A., Pollock, T.M. & Yalisove, S.M. (2008a). Approaching non-destructive surface chemical analysis of CMSX-4 superalloy with double-pulsed laser induced breakdown spectroscopy. Spectrochim Acta B 63, 561565.Google Scholar
McDonald, J.P., Ma, S., Pollock, T.M., Yalisove, S.M. & Nees, J.A. (2008b). Femtosecond pulsed laser ablation dynamics and ablation morphology of Nickel based superalloy CMSX-4. J Appl Phys 103, 093111.Google Scholar
Necas, D. & Klapetek, P. (2012). Gwyddion: An open-source software for SPM data analysis. Cent Eur J Phys 10, 181188.Google Scholar
Payton, E.J. & Nolze, G. (2013). The backscatter electron signal as an additional tool for phase segmentation in electron backscatter diffraction. Microsc Microanal 19, 929941.Google Scholar
Pilchak, A.L., Szozepanski, C.J., Shaffer, J.A., Salem, A.A. & Semiatin, S.L. (2013). Characterization of microstructure, texture, and microtexture in near-alpha titanium mill products. Metall Mater Trans A 44, 48814890.CrossRefGoogle Scholar
Ram, F., Zaefferer, S. & Raabe, D. (2014). Kikuchi bandlet method for the accurate decon-volution and localization of Kikuchi bands in Kikuchi diffraction patterns. J Appl Crystallogr 47, 264275.Google Scholar
Roşca, D. (2010). New uniform grids on the sphere. Astron Astrophys 520, A63.CrossRefGoogle Scholar
Rose-Petruck, C., Jimenez, R., Guo, T., Cavalleri, A., Siders, C.W., Rksi, F., Squier, J.A., Walker, B.C., Wilson, K.R. & Barty, C.P.J. (1999). Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction. Nature 398, 310312.Google Scholar
Schwartz, A.J., Kumar, M., Adams, B.L. & Field, D.P. (Eds.) (2009). Electron Backscatter Diffraction in Materials Science, 2nd ed. New York, NY: Springer.Google Scholar
Semaltianos, N.G., Perrie, W., French, P., Sharp, M., Dearden, G., Logothetidis, S. & Watkins, K.G. (2009). Femtosecond laser ablation characteristics of nickel-based superalloy C263. Appl Phys A 94, 9991009.CrossRefGoogle Scholar
Sipe, J.E., Young, J.F., Preston, J.S. & van Driel, H.M. (1983). Laser-induced periodic surface structure. I. Theory. Phys Rev B 27, 11411154.Google Scholar
Song, Y., Chen, X., Dabade, V., Shield, T.W. & James, R.D. (2013). Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 502, 8588.Google Scholar
Titus, M.S., Eohlin, M.P., Gumbsoh, P. & Pollock, T.M. (2015). Dislocation injection in strontium titanate by femtosecond laser pulses. J Appl Phys 118, 075901.Google Scholar
Tull, B.R., Carey, J.E., Mazur, E., McDonald, J.P. & Yalisove, S.M. (2006). Silicon surface morphologies after femtosecond laser irradiation. MRS Bull 31, 626633.Google Scholar
Villechaise, P., Sabatier, L. & Girard, J.C. (2002). On slip band features and crack initiation in fatigued 316L austenitic stainless steel: Part 1: Analysis by electron back-scattered diffraction and atomic force microscopy. Mater Sci Eng A 323, 377385.CrossRefGoogle Scholar
Whitehouse, D. (2002). Surfaces and Their Measurement. Philadelphia, PA: Kagan Page Science.Google Scholar
Wilkinson, A.J. & Britton, T.B. (2012). Strains, planes, and EBSD in materials science. Mater Today 15, 366376.Google Scholar
Winkelmann, A., Trager-Cowan, C., Sweeney, F., Day, A.P. & Parbrook, P. (2007). Many-beam dynamical simulation of electron backscatter diffraction patterns. Ultramicroscopy 107, 414421.Google Scholar
Zhang, R., Tsai, P.S., Cryer, J. & Shah, M. (1999). Shape from shading: A survey. IEEE Trans Pattern Anal 21, 690706.Google Scholar