Skip to main content
    • Aa
    • Aa

Reproductive Cytotoxicity Is Predicted by Magnetic Resonance Microscopy and Confirmed by Ubiquitin–Proteasome Immunohistochemistry in a Theophylline-Induced Model of Rat Testicular and Epididymal Toxicity

  • M.W. Tengowski (a1), P. Sutovsky (a2), L.W. Hedlund (a3), D.J. Guyot (a1), J.E. Burkhardt (a1), W.E. Thompson (a4), M. Sutovsky (a2) and G.A. Johnson (a3)...

This study investigated the testicular changes in the rat induced by the nonspecific phosphodiesterase inhibitor, theophylline using magnetic resonance microscopy (MRM) and ubiquitin immunostaining techniques. In vivo T1- and T2-weighted images were acquired at 2 T under anesthesia. Increased signal observed in the theophylline-treated rats suggests that leakage of MRM contrast was occurring. In vivo MRM results indicate that day 16 testis displayed an increased T1-weighted water signal in the area of the seminiferous tubule that decreased by day 32. These findings were validated by histopathology, suggesting that in vivo MRM has the sensitivity to predict changes in testis and epididymal tissues. The participation of the ubiquitin system was investigated, using probes for various markers of the ubiquitin-proteasome pathway. MRM can be used to detect subtle changes in the vascular perfusion of organ systems, and the up-regulation/mobilization of ubiquitin-proteasome pathway may be one of the mechanisms used in theophylline-treated epididymis to remove damaged cells before storage in the cauda epididymis. The combined use of in vivo MRM and subsequent tissue or seminal analysis for the presence of ubiquitin in longitudinal studies may become an important biomarker for assessing testis toxicities drug studies.

Corresponding author
Corresponding author. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Daston, G.P., Neubecker, T.A., Yonker, J.E., Busse, L.J., Pratt, R.G., Samaratunga, R.C., & Thomas, S.R. (1987). Magnetic resonance imaging of congenital hydrocephalus in the rat. Fundam Appl Toxicol9, 415422.

Dixon, D., Johnson, G.A., Cofer, G.P., Hedlund, L.W., & Maronpot, R.R. (1988). Magnetic resonance imaging (MRI): A new tool in experimental toxicologic pathology. Toxicol Pathol16, 386391.

Farghali, H., Williams, D.S., Gavaler, J., & Van Thiel, D.H. (1991). Effect of short-term ethanol feeding on rat testes as assessed by 31P NMR spectroscopy, 1H NMR imaging, and biochemical methods. Alcohol Clin Exp Res15, 10181023.

Groettrup, M., Kraft, R., Kostka, S., Standera, S., Stohwasser, R., & Kloetzel, P.M. (1996). A third interferon-gamma-induced subunit exchange in the 20S proteasome. Eur J Immunol26, 863869.

Hermo, L., Dworkin, J., & Oko, R. (1988). Role of epithelial clear cells of the rat epididymis in the disposal of the contents of cytoplasmic droplets detached from spermatozoa. Am J Anat183, 107124.

Hermo, L. & Jacks, D. (2002). Nature's ingenuity: Bypassing the classical secretory route via apocrine secretion. Mol Reprod Dev63, 394410.

Hochstrasser, M. (2002). Molecular biology. New proteases in a ubiquitin stew. Science298, 549552.

Lauterbur, P.C. (1973). Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature242, 190191.

Maeda, M., Maley, J.E., Crosby, D.L., Quets, J.P., Zhu, M.W., Lee, G.J., Lawler, G.J., Ueda, T., Bendixen, B.H., & Yuh, W.T. (1997). Application of contrast agents in the evaluation of stroke: Conventional MR and echo-planar MR imaging. J Magn Reson Imaging7, 2328.

Morrissey, R.E., Collins, J.J., Lamb, J.C., Manus, A.G., & Gulati, D.K. (1988). Reproductive effects of theophylline in mice and rats. Fundam Appl Toxicol10, 525536.

Santamaria, L., Martin, R., Paniagua, R., Fraile, B., Nistal, M., Terenghi, G., & Polak, J.M. (1993). Protein gene product 9.5 and ubiquitin immunoreactivities in rat epididymis epithelium. Histochemistry100, 131138.

Schluter, G. (1989). Ciprofloxacin: Toxicologic evaluation of additional safety data. Am J Med87, 37S39S.

Sutovsky, P., Neuber, E., & Schatten, G. (2002). Ubiquitin-dependent sperm quality control mechanism recognizes spermatozoa with DNA defects as revealed by dual ubiquitin-TUNEL assay. Mol Reprod Dev61, 406413.

Sutovsky, P., Terada, Y., & Schatten, G. (2001b). Ubiquitin-based sperm assay for the diagnosis of male factor infertility. Hum Reprod16, 250258.

Tanaka, K. & Tsurumi, C. (1997). The 26S proteasome: Subunits and functions. Mol Biol Rep24, 311.

Tantibhedhyangkul, J., Weerachatyanukul, W., Carmona, E., Xu, H., Anupriwan, A., Michaud, D., & Tanphaichitr, N. (2002). Role of sperm surface Arylsulfatase A in mouse sperm-zona pellucida binding. Biol Reprod67, 212219.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 89 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd August 2017. This data will be updated every 24 hours.