Skip to main content
×
×
Home

Scanning Confocal Electron Energy-Loss Microscopy Using Valence-Loss Signals

  • Huolin L. Xin (a1), Christian Dwyer (a2), David A. Muller (a3) (a4), Haimei Zheng (a1) and Peter Ercius (a5)...
Abstract
Abstract

Finding a faster alternative to tilt-series electron tomography is critical for rapidly evolving fields such as the semiconductor industry, where failure analysis could greatly benefit from higher throughput. We present a theoretical and experimental evaluation of scanning confocal electron energy-loss microscopy (SCEELM) using valence-loss signals, which is a promising technique for the reliable reconstruction of materials with sub-10-nm resolution. Such a confocal geometry transfers information from the focused portion of the electron beam and enables rapid three-dimensional (3D) reconstruction by depth sectioning. SCEELM can minimize or eliminate the missing-information cone and the elongation problem that are associated with other depth-sectioning image techniques in a transmission electron microscope. Valence-loss SCEELM data acquisition is an order of magnitude faster and requires little postprocessing compared with tilt-series electron tomography. With postspecimen chromatic aberration (C c) correction, SCEELM signals can be acquired in parallel in the direction of energy dispersion with the aid of a physical pinhole. This increases the efficiency by 10×–100×, and can provide 3D resolved chemical information for multiple core-loss signals simultaneously.

Copyright
Corresponding author
* Corresponding author. E-mail: hxin@lbl.gov
** Corresponding author. E-mail: percius@lbl.gov
References
Hide All
Batson P.E. (1993). Symmetry-selected electron-energy-loss scattering in diamond. Phys Rev Lett 70, 18221825.
Batson P.E., Dellby N. & Krivanek O.L. (2002). Sub-Angstrom resolution using aberration corrected electron optics. Nature 418, 617620.
Behan G., Cosgriff E.C., Kirkland A.I. & Nellist P.D. (2009). Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Philos Trans R Soc London, Ser A 367, 38253844.
Born M. & Wolf E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge, UK: Cambridge University Press.
Bosman M., Keast V., García-Muñoz J., D'Alfonso A., Findlay S. & Allen L. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99, 086102.
Botton G.A., Lazar S. & Dwyer C. (2010). Elemental mapping at the atomic scale using low accelerating voltages. Ultramicroscopy 110, 926934.
Cosgriff E.C., D'Alfonso A.J., Allen L.J., Findlay S.D., Kirkland A.I. & Nellist P.D. (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part I: Elastic scattering. Ultramicroscopy 108, 15581566.
Couillard M., Radtke G., Knights A.P. & Botton G.A. (2011). Three-dimensional atomic structure of metastable nanoclusters in doped semiconductors. Phys Rev Lett 107, 186104.
Cox I.J., Sheppard C.J.R. & Wilson T. (1982). Super-resolution by confocal fluorescent microscopy. Optik (Stuttgart) 60, 391396.
D'Alfonso A.J., Cosgriff E.C., Findlay S.D., Behan G., Kirkland A.I., Nellist P.D. & Allen L.J. (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part II: Inelastic scattering. Ultramicroscopy 108, 15671578.
D'Alfonso A.J., Findlay S.D., Oxley M.P., Pennycook S.J., van Benthem K. & Allen L.J. (2007). Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy. Ultramicroscopy 108, 1728.
Dwyer C. (2005). Multislice theory of fast electron scattering incorporating atomic inner-shell ionization. Ultramicroscopy 104, 141151.
Einspahr J.J. & Voyles P.M. (2006). Prospects for 3D, nanometer-resolution imaging by confocal STEM. Ultramicroscopy 106, 10411052.
Ercius P., Weyland M., Muller D.A. & Gignac L.M. (2006). Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography. Appl Phys Lett 88, 243116.
Frigo S.P., Levine Z.H. & Zaluzec N.J. (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81, 21122114.
Hashimoto A., Mitsuishi K., Shimojo M., Zhu Y. & Takeguchi M. (2011). Experimental examination of the characteristics of bright-field scanning confocal electron microscopy images. J Electron Microsc 60(3), 227234.
Hashimoto A., Shimojo M., Mitsuishi K. & Takeguchi M. (2009). Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy. J Appl Phys 106, 086101.
Hashimoto A., Wang P., Shimojo M., Mitsuishi K., Nellist P.D., Kirkland A.I. & Takeguchi M. (2012). Three-dimensional analysis of nanoparticles on carbon support using aberration-corrected scanning confocal electron microscopy. Appl Phys Lett 101, 253108.
Hovden R., Xin H.L. & Muller D.A. (2011). Extended depth of field for high-resolution scanning transmission electron microscopy. Microsc Microanal 17, 7580.
Howie A. (1963). Inelastic scattering of electrons by crystals I. The theory of small-angle inelastic scattering. Proc R Soc London, Ser A 271, 268287.
Intaraprasonk V., Xin H.L. & Muller D.A. (2008). Analytic derivation of optimal imaging conditions for incoherent imaging in aberration-corrected electron microscopes. Ultramicroscopy 108, 14541466.
Kohl H. & Rose H. (1985). Theory of image-formation by inelastically scattered electrons in the electron microscope. Adv Electron El Phys 65, 173227.
Kourkoutis L.F., Xin H.L., Higuchi T., Hotta Y., Lee J.H., Hikita Y., Schlom D.G., Hwang H.Y. & Muller D.A. (2010). Atomic-resolution spectroscopic imaging of oxide interfaces. Philos Mag 90, 47314749.
Krivanek O.L., Nellist P.D., Dellby N., Murfitt M.F. & Szilagyi Z. (2003). Towards sub-0.5 Å electron beams. Ultramicroscopy 96, 229237.
Li H.Y., Xin H.L., Muller D.A. & Estroff L.A. (2009). Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 326, 12441247.
Lupini A.R. & de Jonge N. (2011). The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy. Microsc Microanal 17, 817826.
Midgley P.A. & Dunin-Borkowski R.E. (2009). Electron tomography and holography in materials science. Nat Mater 8, 271280.
Midgley P.A. & Weyland M. (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413431.
Mitsuishi K., Hashimoto A., Takeguchi M., Shimojo M. & Ishizuka K. (2010). Imaging properties of bright-field and annular-dark-field scanning confocal electron microscopy. Ultramicroscopy 111, 2026.
Muller D.A. (2009). Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater 8, 263270.
Muller D.A., Kourkoutis L.F., Murfitt M., Song J.H., Hwang H.Y., Silcox J., Dellby N. & Krivanek O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 10731076.
Muller D.A. & Silcox J. (1995). Delocalization in inelastic scattering. Ultramicroscopy 59, 195213.
Ramachandra R. & de Jonge N. (2012). Optimized deconvolution for maximum axial resolution in three-dimensional aberration-corrected scanning transmission electron microscopy. Microsc Microanal 18, 218228.
Rose H. (1976a). Image formation by inelastically scattered electrons in electron microscopy. Optik (Stuttgart) 45, 139158.
Rose H. (1976b). Image formation by inelastically scattered electrons in electron microscopy II. Optik (Stuttgart) 45, 187208.
Sheppard C.J.R. (1986a). The spatial-frequency cutoffs in 3-dimensional imaging. Optik 72, 131133.
Sheppard C.J.R. (1986b). The spatial-frequency cutoffs in 3-dimensional imaging II. Optik 74, 128129.
Sheppard C.J.R. & Choudhury A. (1977). Image formation in the scanning microscope. Optica Acta 24, 10511073.
Streibl N. (1985). Three-dimensional imaging by a microscope. J Opt Soc Am A 2, 121127.
Takeguchi M., Hashimoto A., Shimojo M., Mitsuishi K. & Furuya K. (2008). Development of a stage-scanning system for high-resolution confocal STEM. J Electron Microsc (Tokyo) 57, 123127.
Tan H., Turner S., Yücelen E., Verbeeck J. & Van Tendeloo G. (2011). 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy. Phys Rev Lett 107, 107602.
Wang P., Behan G., Kirkland A.I., Nellist P.D., Cosgriff E.C., D'Alfonso A.J., Morgan A.J., Allen L.J., Hashimoto A. & Takeguchi M. (2011). Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope. Ultramicroscopy 111(7), 877886.
Wang P., Behan G., Takeguchi M., Hashimoto A., Mitsuishi K., Shimojo M., Kirkland A.I. & Nellist P.D. (2010). Nanoscale energy-filtered scanning confocal electron microscopy using a double-aberration-corrected transmission electron microscope. Phys Rev Lett 104, 200801.
Xin H.L., Intaraprasonk V. & Muller D.A. (2008a). Controlling channeling effects in aberration-corrected STEM tomography. Microsc Microanal 14, 926927.
Xin H.L., Intaraprasonk V. & Muller D.A. (2008b). Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl Phys Lett 92, 013125.
Xin H.L. & Muller D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc 58, 157165.
Xin H.L. & Muller D.A. (2010). Three-dimensional imaging in aberration-corrected electron microscopes. Microsc Microanal 16, 445455.
Xin H.L., Mundy J.A., Liu Z., Cabezas R., Hovden R., Kourkoutis L.F., Zhang J., Subramanian N.P., Makharia R., Wagner F.T. & Muller D.A. (2011). Atomic-resolution spectroscopic imaging of ensembles of nanocatalyst particles across the life of a fuel cell. Nano Lett 12, 490497.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
PDF
Supplementary materials

Xin Supplementary Material
Xin Supplementary Material

 PDF (282 KB)
282 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 6
Total number of PDF views: 33 *
Loading metrics...

Abstract views

Total abstract views: 587 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd January 2018. This data will be updated every 24 hours.