Skip to main content
    • Aa
    • Aa

Scanning Confocal Electron Energy-Loss Microscopy Using Valence-Loss Signals

  • Huolin L. Xin (a1), Christian Dwyer (a2), David A. Muller (a3) (a4), Haimei Zheng (a1) and Peter Ercius (a5)...

Finding a faster alternative to tilt-series electron tomography is critical for rapidly evolving fields such as the semiconductor industry, where failure analysis could greatly benefit from higher throughput. We present a theoretical and experimental evaluation of scanning confocal electron energy-loss microscopy (SCEELM) using valence-loss signals, which is a promising technique for the reliable reconstruction of materials with sub-10-nm resolution. Such a confocal geometry transfers information from the focused portion of the electron beam and enables rapid three-dimensional (3D) reconstruction by depth sectioning. SCEELM can minimize or eliminate the missing-information cone and the elongation problem that are associated with other depth-sectioning image techniques in a transmission electron microscope. Valence-loss SCEELM data acquisition is an order of magnitude faster and requires little postprocessing compared with tilt-series electron tomography. With postspecimen chromatic aberration (Cc) correction, SCEELM signals can be acquired in parallel in the direction of energy dispersion with the aid of a physical pinhole. This increases the efficiency by 10×–100×, and can provide 3D resolved chemical information for multiple core-loss signals simultaneously.

Corresponding author
*Corresponding author. E-mail:
**Corresponding author. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

P.E. Batson (1993). Symmetry-selected electron-energy-loss scattering in diamond. Phys Rev Lett 70, 18221825.

P.E. Batson , N. Dellby & O.L. Krivanek (2002). Sub-Angstrom resolution using aberration corrected electron optics. Nature 418, 617620.

G. Behan , E.C. Cosgriff , A.I. Kirkland & P.D. Nellist (2009). Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Philos Trans R Soc London, Ser A 367, 38253844.

M. Born & E. Wolf (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge, UK: Cambridge University Press.

M. Bosman , V. Keast , J. García-Muñoz , A. D'Alfonso , S. Findlay & L. Allen (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99, 086102.

G.A. Botton , S. Lazar & C. Dwyer (2010). Elemental mapping at the atomic scale using low accelerating voltages. Ultramicroscopy 110, 926934.

E.C. Cosgriff , A.J. D'Alfonso , L.J. Allen , S.D. Findlay , A.I. Kirkland & P.D. Nellist (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part I: Elastic scattering. Ultramicroscopy 108, 15581566.

M. Couillard , G. Radtke , A.P. Knights & G.A. Botton (2011). Three-dimensional atomic structure of metastable nanoclusters in doped semiconductors. Phys Rev Lett 107, 186104.

A.J. D'Alfonso , E.C. Cosgriff , S.D. Findlay , G. Behan , A.I. Kirkland , P.D. Nellist & L.J. Allen (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part II: Inelastic scattering. Ultramicroscopy 108, 15671578.

A.J. D'Alfonso , S.D. Findlay , M.P. Oxley , S.J. Pennycook , K. van Benthem & L.J. Allen (2007). Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy. Ultramicroscopy 108, 1728.

C. Dwyer (2005). Multislice theory of fast electron scattering incorporating atomic inner-shell ionization. Ultramicroscopy 104, 141151.

J.J. Einspahr & P.M. Voyles (2006). Prospects for 3D, nanometer-resolution imaging by confocal STEM. Ultramicroscopy 106, 10411052.

P. Ercius , M. Weyland , D.A. Muller & L.M. Gignac (2006). Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography. Appl Phys Lett 88, 243116.

S.P. Frigo , Z.H. Levine & N.J. Zaluzec (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81, 21122114.

A. Hashimoto , K. Mitsuishi , M. Shimojo , Y. Zhu & M. Takeguchi (2011). Experimental examination of the characteristics of bright-field scanning confocal electron microscopy images. J Electron Microsc 60(3), 227234.

A. Hashimoto , M. Shimojo , K. Mitsuishi & M. Takeguchi (2009). Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy. J Appl Phys 106, 086101.

A. Hashimoto , P. Wang , M. Shimojo , K. Mitsuishi , P.D. Nellist , A.I. Kirkland & M. Takeguchi (2012). Three-dimensional analysis of nanoparticles on carbon support using aberration-corrected scanning confocal electron microscopy. Appl Phys Lett 101, 253108.

R. Hovden , H.L. Xin & D.A. Muller (2011). Extended depth of field for high-resolution scanning transmission electron microscopy. Microsc Microanal 17, 7580.

A. Howie (1963). Inelastic scattering of electrons by crystals I. The theory of small-angle inelastic scattering. Proc R Soc London, Ser A 271, 268287.

V. Intaraprasonk , H.L. Xin & D.A. Muller (2008). Analytic derivation of optimal imaging conditions for incoherent imaging in aberration-corrected electron microscopes. Ultramicroscopy 108, 14541466.

H. Kohl & H. Rose (1985). Theory of image-formation by inelastically scattered electrons in the electron microscope. Adv Electron El Phys 65, 173227.

L.F. Kourkoutis , H.L. Xin , T. Higuchi , Y. Hotta , J.H. Lee , Y. Hikita , D.G. Schlom , H.Y. Hwang & D.A. Muller (2010). Atomic-resolution spectroscopic imaging of oxide interfaces. Philos Mag 90, 47314749.

O.L. Krivanek , P.D. Nellist , N. Dellby , M.F. Murfitt & Z. Szilagyi (2003). Towards sub-0.5 Å electron beams. Ultramicroscopy 96, 229237.

H.Y. Li , H.L. Xin , D.A. Muller & L.A. Estroff (2009). Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 326, 12441247.

A.R. Lupini & N. de Jonge (2011). The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy. Microsc Microanal 17, 817826.

P.A. Midgley & R.E. Dunin-Borkowski (2009). Electron tomography and holography in materials science. Nat Mater 8, 271280.

P.A. Midgley & M. Weyland (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413431.

K. Mitsuishi , A. Hashimoto , M. Takeguchi , M. Shimojo & K. Ishizuka (2010). Imaging properties of bright-field and annular-dark-field scanning confocal electron microscopy. Ultramicroscopy 111, 2026.

D.A. Muller (2009). Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater 8, 263270.

D.A. Muller , L.F. Kourkoutis , M. Murfitt , J.H. Song , H.Y. Hwang , J. Silcox , N. Dellby & O.L. Krivanek (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 10731076.

D.A. Muller & J. Silcox (1995). Delocalization in inelastic scattering. Ultramicroscopy 59, 195213.

R. Ramachandra & N. de Jonge (2012). Optimized deconvolution for maximum axial resolution in three-dimensional aberration-corrected scanning transmission electron microscopy. Microsc Microanal 18, 218228.

C.J.R. Sheppard & A. Choudhury (1977). Image formation in the scanning microscope. Optica Acta 24, 10511073.

N. Streibl (1985). Three-dimensional imaging by a microscope. J Opt Soc Am A 2, 121127.

M. Takeguchi , A. Hashimoto , M. Shimojo , K. Mitsuishi & K. Furuya (2008). Development of a stage-scanning system for high-resolution confocal STEM. J Electron Microsc (Tokyo) 57, 123127.

H. Tan , S. Turner , E. Yücelen , J. Verbeeck & G. Van Tendeloo (2011). 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy. Phys Rev Lett 107, 107602.

P. Wang , G. Behan , A.I. Kirkland , P.D. Nellist , E.C. Cosgriff , A.J. D'Alfonso , A.J. Morgan , L.J. Allen , A. Hashimoto & M. Takeguchi (2011). Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope. Ultramicroscopy 111(7), 877886.

P. Wang , G. Behan , M. Takeguchi , A. Hashimoto , K. Mitsuishi , M. Shimojo , A.I. Kirkland & P.D. Nellist (2010). Nanoscale energy-filtered scanning confocal electron microscopy using a double-aberration-corrected transmission electron microscope. Phys Rev Lett 104, 200801.

H.L. Xin , V. Intaraprasonk & D.A. Muller (2008a). Controlling channeling effects in aberration-corrected STEM tomography. Microsc Microanal 14, 926927.

H.L. Xin , V. Intaraprasonk & D.A. Muller (2008b). Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl Phys Lett 92, 013125.

H.L. Xin & D.A. Muller (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc 58, 157165.

H.L. Xin & D.A. Muller (2010). Three-dimensional imaging in aberration-corrected electron microscopes. Microsc Microanal 16, 445455.

H.L. Xin , J.A. Mundy , Z. Liu , R. Cabezas , R. Hovden , L.F. Kourkoutis , J. Zhang , N.P. Subramanian , R. Makharia , F.T. Wagner & D.A. Muller (2011). Atomic-resolution spectroscopic imaging of ensembles of nanocatalyst particles across the life of a fuel cell. Nano Lett 12, 490497.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Xin Supplementary Material
Xin Supplementary Material

 PDF (282 KB)
282 KB


Altmetric attention score

Full text views

Total number of HTML views: 4
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 498 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st July 2017. This data will be updated every 24 hours.