Skip to main content
×
Home
    • Aa
    • Aa

Secretory Structures in Vegetative and Floral Organs of Hypericum perfoliatum

  • I. Vieira da Silva (a1), T. Nogueira (a2) and L. Ascensão (a1)
Abstract

Hypericum L, the largest genus of Hypericaceae comprising ca. 484 species of shrubs and perennial and annual herbs, is worldwide in a large variety of habitats in subtropical and temperate areas. Hypericum species, namely H. perforatum (St. John’s wort) the most representative species of the genus, have been used in folk medicine thought the centuries for a large number of ailments. Nowadays, it is well known the therapeutic potentialities of their main compounds, hypericin, pseudohypericin and hyperforin, which justify its clinical use. Despite the intense phytochemical and pharmacological research conducted in Hypericum species during the last decades, morpho-anatomical studies on the glands that produce the bioactive compounds are scarce and fragmented, only H. perforatum was studied in detail. As part as an ongoing project on Hypericum glands, the present research aims to provide information about the morphology, anatomy and histochemistry of the secretory structures present on the aerial organs of H. perfoliatum, one of the seventeen species of Hypericum that occur wild in Portugal.

The types of glandular structures and their pattern of distribution on the leaves and flowers were studied by light (MO) and scanning electron microscopy (SEM). Samples for SEM were fixed with glutaraldehyde, dehydrated in a graded acetone series, critical-point dried and coated with gold. For general anatomy samples were fixed in the same fixative and embedded in Leica historesin®. Histochemical tests and standard control procedures were carried out in fresh material to localize in situ the main chemical classes of compounds present in the secretion. Observations were carried out Observations were carried out on a JEOL T220 scanning electron microscope and with a Leica DM-2500 microscope.

The aerial organs of H. perfoliatum present four different types of secretory structures (idioblasts, translucent glands, ducts and black nodules), that can occur exclusively in a specific organ or in more than one organ. Tanniniferous secretory cells are frequent in the epidermis, as well as in the ground parenchyma of all organs, where they are scattered together with crystal idioblasts containing druses of calcium oxalate. Translucent glands are spheroidal subepidermical glandular pockets delimited by two or three cell layers of fattened and densely-stained cells (Fig. 1A). They are typically found in the leaves, giving them a perforated appearance. Two types of secretory ducts, cavities that differ from translucent glands in the length, are present in the vegetative and floral organs. Type A ducts have a narrow lumen delimited by four secretory epithelial cells and occur associated to the phloem in all aerial organs with exception of stamens (Fig. 1B, arrow). Type B ducts have a wider lumen, are generally limited by ten thin-walled secretory cells surrounding by a sheath of thick-walled cells and are located in the parenchyma of sepals, petals and ovary. Black nodules are clusters of cells lacking a central intercellular space (lumen), surrounded by one or two-layers of flat cells of a delimiting sheath (Fig. 1C). The inner cells are large, irregular, tightly packed and filled with a dark red stained content. Spheroidal black nodules are found punctuating the leaf margins and in the connective tissue of the stamen (Fig. 1D), whereas long-shaped black nodules are distributed across the lamina of bracts, sepals and petals. Peculiar glandular emergences, which look like peduncular black nodules, are present along the margin of the bracts and sepals. They consist of a multicellular peduncle and a dark-red multicellular secretory head-a black nodule (Fig. 1E). Histochemical tests showed that translucent glands secreted essential oils rich in phenolic compounds (flavonolic aglycones), ducts produce oleoresins and nodules contain essentially hypericin. In mature organs, the disorganization of the inner cells of the nodules seems to form a large intercellular space, a lumen.

All these secretory structures were also found in H. perforatum with exception of peduncular black nodules, that was only reported in H. elodes, but not studied in detail. The obtained results allow as speculating that nodules may be primitive multicellular structures, relics of an evolutionary process, that give rise to cavities, internal secretory structures that stores secretion material in intercellular spaces.

The authors acknowledge the funding by Fundação para a Ciência e Tecnologia through the project FCT PEst-OE/EQB/LA0023/2011.

    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Secretory Structures in Vegetative and Floral Organs of Hypericum perfoliatum
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Secretory Structures in Vegetative and Floral Organs of Hypericum perfoliatum
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Secretory Structures in Vegetative and Floral Organs of Hypericum perfoliatum
      Available formats
      ×
Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 28 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 28th April 2017. This data will be updated every 24 hours.