Skip to main content Accessibility help
×
Home

Simulation of Probe Position-Dependent Electron Energy-Loss Fine Structure

  • Mark P. Oxley (a1) (a2), Myron D. Kapetanakis (a1), Micah P. Prange (a1) (a3), Maria Varela (a2) (a4), Stephen J. Pennycook (a1) (a2) and Sokrates T. Pantelides (a1) (a2) (a5)...

Abstract

We present a theoretical framework for calculating probe-position-dependent electron energy-loss near-edge structure for the scanning transmission electron microscope by combining density functional theory with dynamical scattering theory. We show how simpler approaches to calculating near-edge structure fail to include the fundamental physics needed to understand the evolution of near-edge structure as a function of probe position and investigate the dependence of near-edge structure on probe size. It is within this framework that density functional theory should be presented, in order to ensure that variations of near-edge structure are truly due to local electronic structure and how much from the diffraction and focusing of the electron beam.

Copyright

Corresponding author

* Corresponding author. oxleymp@gmail.com

References

Hide All
Adolph, B., Furthmüller, J. & Bechstedt, F. (2001). Optical properties of semiconductors using projector-augmented waves. Phys Rev B 63, 125108.
Allen, L.J., Findlay, S.D., Oxley, M.P. & Rossouw, C.J. (2003). Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96, 4764.
Allen, L.J. & Josefsson, T.W. (1995). Inelastic scattering of fast electrons by crystals. Phys Rev B 52, 31843198.
Ankudinov, A.L., Zabinsky, S.I. & Rehr, J.J. (1996). Single configuration Dirac-Fock atom code. Comp Phys Commun 98, 359364.
Blöchl, P.E. (1994). Projector augmented-wave method. Phys Rev B 50, 1795317979.
Bosman, M., Keast, V.J., García-Muñoz, J.L., D’Alfonso, A.J., Findlay, S.D. & Allen, L.J. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99, 086102.
Browning, N.D., Chisholm, M.F. & Pennycook, S.J. (1993). Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143146.
Buczko, R., Duscher, G., Pennycook, S.J. & Pantelides, S.T. (2000). Excitonic effects in core-excitation spectra of semiconductors. Phys Rev Lett 85, 21682171.
Dwyer, C. (2005). Multislice theory of fast electron scattering incorporating atomic inner-shell ionization. Ultramicroscopy 104, 141151.
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope . New York: Springer.
Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102, 096101.
Forbes, B.D., Martin, A.V., Findlay, S.D., D’Alfonso, A.J. & Allen, L.J. (2010). Quantum mechanical model for phonon excitation in electron diffraction and imaging using a Born-Oppenheimer approximation. Phys Rev B 82, 104103.
Gazquez, J., Luo, W.D., Oxley, M.P., Prange, M., Torija, M.A., Sharma, M., Leighton, C., Pantelides, S.T., Pennycook, S.J. & Varela, M. (2011). Atomic-resolution imaging of spin-state superlattices in nanopockets within cobaltite thin films. Nano Lett 11, 973976.
Hébert, C. (2007). Practical aspects of running the WIEN2k code for electron spectroscopy. Micron 38, 1228.
Jorissen, K., Rehr, J.J. & Verbeeck, J. (2010). Multiple scattering calculations of relativistic electron energy loss spectra. Phys Rev B 81, 155108.
Kohl, H. & Rose, H. (1985). Theory of image formation by inelastically scattered electrons in the electron microscope. In Advances in Electronics and Electron Physics, Hawkes, P. W. (Ed.), pp. 173227. London: Academic Press.
Kresse, G. & Furthmüller, J. (1996 a). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6, 1550.
Kresse, G. & Furthmüller, J. (1996 b). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54, 1116911186.
Kresse, G. & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Phys Rev B 47, 558561.
Kresse, G. & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59, 17581775.
Lupini, A.R., Borisevich, A.Y., Idrobo, J.C., Christen, H.M., Biegalski, M. & Pennycook, S.J. (2009). Characterizing the two- and three-dimensional resolution of an improved aberration-corrected STEM. Microsc Microanal 15, 441453.
Maslen, V. (1983). Analytical angular integration of a product of hydrogenic bound-free first Born matrix elements. J Phys B 16, 20652069.
Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 10731076.
Nelhiebel, M., Louf, P.H., Schattschneider, P., Blaha, P., Schwarz, K. & Jouffrey, B. (1999). Theory of orientation-sensitive near-edge fine-structure core-level spectroscopy. Phys Rev B 59, 1280712814.
Nelhiebel, M., Schattschneider, P. & Jouffrey, B. (2000). Observation of ionization in a crystal interferometer. Phys Rev Lett 85, 18471850.
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. & Pennycook, S.J. (2004). Direct sub-Angstrom imaging of a crystal lattice. Science 305, 1741.
Oxley, M.P. & Allen, L.J. (1998). Delocalization of the effective interaction for inner-shell ionization in crystals. Phys Rev B 57, 32733282.
Oxley, M.P., Cosgriff, E.C. & Allen, L.J. (2005). Nonlocality in imaging. Phys Rev Lett 94, 203906.
Oxley, M.P., Varela, M., Pennycook, T.J., van Benthem, K., Findlay, S.D., D’Alfonso, A.J., Allen, L.J. & Pennycook, S.J. (2007). Interpreting atomic-resolution spectroscopic images. Phys Rev B 76, 064303.
Prange, M.P., Oxley, M.P., Varela, M., Pennycook, S.J. & Pantelides, S.T. (2012). Simulation of spatially resolved electron energy loss near-edge structure for scanning transmission electron microscopy. Phys Rev Lett 109.
Rehr, J.J., Kas, J.J., Prange, M.P., Sorini, A.P., Takimoto, Y. & Vila, F. (2009). Ab initio theory and calculations of X-ray spectra. Comptes Rendus Physique 10, 548559.
Rusz, J., Rubino, S. & Schattschneider, P. (2007). First-principles theory of chiral dichroism in electron microscopy applied to 3d ferromagnets. Phys Rev B 75, 214425.
Sawada, H., Hosokawa, F., Kaneyama, T., Ishizawa, T., Terao, M., Kawazoe, M., Sannomiya, T., Tomita, T., Kondo, Y. & Tanaka, T. (2007). Achieving 63 pm resolution in scanning transmission electron microscope with spherical aberration corrector. Japanese J Appl Phys 46, L568L570.
Sorini, A.P., Rehr, J.J. & Levine, Z.H. (2008). Magic angle in electron energy loss spectra: Relativistic and dielectric corrections. Phys Rev B 77, 115126.
Van Benthem, K., Elsässer, C. & Rühle, M. (2003). Core-hole effects on the ELNES of absorption edges in SrTiO3 . Ultramicroscopy 96, 509522.
Varela, M., Oxley, M.P., Luo, W., Tao, J., Watanabe, M., Lupini, A.R., Pantelides, S.T. & Pennycook, S.J. (2009). Atomic-resolution imaging of oxidation states in manganites. Phys Rev B 79, 085117.
Witte, C., Findlay, S.D., Oxley, M.P., Rehr, J.J. & Allen, L.J. (2009). Theory of dynamical scattering in near-edge electron energy loss spectroscopy. Phys Rev B 80.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed