Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T17:44:52.768Z Has data issue: false hasContentIssue false

Single- and Multi-Frequency Detection of Surface Displacements via Scanning Probe Microscopy

Published online by Cambridge University Press:  02 January 2015

Konstantin Romanyuk
Affiliation:
Department of Materials and Ceramic Engineering & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal Rzhanov Institute of Semiconductor Physics, Lavrentieva 13, Novosibirsk 630090, Russia
Sergey Yu. Luchkin
Affiliation:
Department of Materials and Ceramic Engineering & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
Maxim Ivanov
Affiliation:
Department of Materials and Ceramic Engineering & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
Arseny Kalinin
Affiliation:
NT-MDT Co., Post Box 158, Building 317-А, Zelenograd, Moscow 124482, Russia
Andrei L. Kholkin*
Affiliation:
Department of Materials and Ceramic Engineering & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
*
*Corresponding author. kholkin@ua.pt
Get access

Abstract

Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balke, N., Bdikin, I.K., Kalinin, S.V. & Kholkin, A.L. (2009). Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: State of the art and prospects for the future. J Amer Ceram Soc 92, 16291647.CrossRefGoogle Scholar
Balke, N., Jesse, S., Morozovska, A.N., Eliseev, E., Chung, D.W., Kim, Y., Adamczyk, L., García, R.E., Dudney, N. & Kalinin, S.V. (2010 a). Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat Nanotechnol 5, 749754.Google Scholar
Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Tselev, A., Ivanov, I.N., Dudney, N.J. & Kalinin, S.V. (2010 b). Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. Nano Lett 10(9), 34203425.Google Scholar
Bonnell, D. & Kalinin, S.V. (2013). Scanning Probe Microscopy for Energy Research. 5 Toh Tuck Link, Singapore 596224: World Scientific.CrossRefGoogle Scholar
Bonnell, D.A., Kalinin, S.V., Kholkin, A.L. & Gruverman, A. (2009). Piezoresponse force microscopy: A window into electromechanical behavior at the nanoscale. MRS Bull 34, 648657.Google Scholar
Butt, H.J. & Jaschke, M. (1995). Calculation of thermal noise in atomic force microscopy. Nanotechnology 6, 17.Google Scholar
Eliseev, E.A., Kalinin, S.V., Jesse, S., Bravina, S.L. & Morozovska, A.N. (2007). Electromechanical detection in scanning probe microscopy: Tip models and materials contrast. J Appl Phys 102, 014109.Google Scholar
Fukuma, T., Kimura, M., Kobayashi, K., Matsushige, K. & Yamada, H. (2005). Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy. Rev Sci Instrum 76, 053704.CrossRefGoogle Scholar
Gannepalli, A., Yablon, D.G., Tsou, A.H. & Proksch, R. (2011). Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM. Nanotechnology 22, 355705.CrossRefGoogle ScholarPubMed
Han, W. & Lindsay, S.M. (2007). Intrinsic contact noise: A figure of merit for identifying high resolution AFMs. Application note.Google Scholar
Hong, S. (2004). Nanoscale Phenomena in Ferroelectric Thin Films. Boston: Kluwer.Google Scholar
Hutter, J.L. & Bechhoefer, J. (1993). Calibration of atomic-force microscope tips. Rev Sci Instrum 64, 1868.Google Scholar
Jesse, S. & Kalinin, S.V. (2011). Band excitation in scanning probe microscopy: Sines of change. J Phys D: Appl Phys 44, 464006.CrossRefGoogle Scholar
Jesse, S., Kalinin, S.V., Proksch, R., Baddorf, A.P. & Rodriguez, B.J. (2007). The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18, 435503.Google Scholar
Jesse, S., Kumar, A., Arruda, T.M., Kim, Y., Kalinin, S.V. & Ciucci, F. (2012). Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level. MRS Bull 37, 651658.Google Scholar
Kalinin, S.V. & Gruverman, A. (2006). Scanning Probe Microscopy (2 vol. set): Electrical and Electromechanical Phenomena at the Nanoscale (vols. 1 and 2). New York, NY: Springer.Google Scholar
Kalinin, S.V. & Morozovska, A.N. (2014). Electrochemical strain microscopy of local electrochemical processes in solids: Mechanism of imaging and spectroscopy in the diffusion limit. J Electroceram 32, 5159.Google Scholar
Kalinin, S.V., Morozovska, A.N., Chen, L.Q. & Rodriguez, B.J. (2010). Local polarization dynamics in ferroelectric materials. Rep Prog Phys 73, 056502.Google Scholar
Kolosov, O., Gruverman, A., Hatano, J., Takahashi, K. & Tokumoto, H. (1995). Nanoscale visualization and control of ferroelectric domains by atomic force microscopy. Phys Rev Lett 21, 43094312.Google Scholar
Kopycinska-Muller, M., Geiss, R.H. & Hurley, D.C. (2006). Contact mechanics and tip shape in AFM-based nanomechanical measurements. Ultramicroscopy 106, 466474.Google Scholar
Kos, A.B. & Hurley, D.C. (2008). Nanomechanical mapping with resonance tracking scanned probe microscope. Meas Sci Technol 19, 015504.Google Scholar
Li, J., Kalinin, S.V. & Kholkin, A.L. (2013). Preface to special topic: Selected papers from the piezoresponse force microscopy workshop series: Part of the joint ISAF-ECAPD-PFM 2012 conference. J Appl Phys 113, 187101.Google Scholar
Lübbe, J., Temmen, M., Rode, S., Rahe, P., Kühnle, A. & Reichling, M. (2013). Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy. Beilstein J Nanotechnol 4, 3244.Google Scholar
Luchkin, S.Y., Amanieu, H.Y., Rosato, D. & Kholkin, A.L. (2014). Li distribution in graphite anodes: A kelvin probe force microscopy approach. J Power Sources 268, 887894.Google Scholar
Morozovska, A.N., Eliseev, E.A., Balke, N. & Kalinin, S.V. (2010). Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms. J Appl Phys 108, 053712.Google Scholar
Morozovska, A.N., Eliseev, E.A., Bravina, S.L., Ciucci, F., Svechnikov, G.S., Chen, L.-Q. & Kalinin, S.V. (2012). Frequency dependent dynamical electromechanical response of mixed ionic-electronic conductors. J Appl Phys 111, 014107.Google Scholar
Morozovska, A.N., Eliseev, E.A., Tagantsev, A.K., Bravina, S.L., Chen, L.-Q. & Kalinin, S.V. (2011). Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, vegard strains, and flexoelectric effect. Phys Rev B 83, 195313.Google Scholar
Rast, S., Wattinger, C., Gysin, U. & Meyer, E. (2000). The noise of cantilevers. Nanotechnology 11, 169172.Google Scholar
Rodriguez, B.J., Callahan, C., Kalinin, S.V. & Proksch, R. (2007). Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504.Google Scholar
Rodriguez, B.J., Jesse, S., Habelitz, S., Proksch, R. & Kalinin, S.V. (2009). Intermittent contact mode piezoresponse force microscopy in a liquid environment. Nanotechnology 20, 195701.Google Scholar
Walters, D.A., Cleveland, J.P., Thomson, N.H., Hansma, P.K., Wendman, M.A., Gurley, G. & Elings, V. (1996). Short cantilevers for atomic force microscopy. Rev Sci Instrum 67, 3583.Google Scholar
Supplementary material: Image

Romanyuk Supplementary Material

Figure

Download Romanyuk Supplementary Material(Image)
Image 1.1 MB