Skip to main content
×
Home
    • Aa
    • Aa

A (S)TEM Gas Cell Holder with Localized Laser Heating for In Situ Experiments

  • Shareghe Mehraeen (a1), Joseph T. McKeown (a2), Pushkarraj V. Deshmukh (a3), James E. Evans (a1) (a4), Patricia Abellan (a4), Pinghong Xu (a5), Bryan W. Reed (a2), Mitra L. Taheri (a6), Paul E. Fischione (a3) and Nigel D. Browning (a1) (a4) (a5)...
Abstract
Abstract

The advent of aberration correction for transmission electron microscopy has transformed atomic resolution imaging into a nearly routine technique for structural analysis. Now an emerging frontier in electron microscopy is the development of in situ capabilities to observe reactions at atomic resolution in real time and within realistic environments. Here we present a new in situ gas cell holder that is designed for compatibility with a wide variety of sample type (i.e., dimpled 3-mm discs, standard mesh grids, various types of focused ion beam lamellae attached to half grids). Its capabilities include localized heating and precise control of the gas pressure and composition while simultaneously allowing atomic resolution imaging at ambient pressure. The results show that 0.25-nm lattice fringes are directly visible for nanoparticles imaged at ambient pressure with gas path lengths up to 20 μm. Additionally, we quantitatively demonstrate that while the attainable contrast and resolution decrease with increasing pressure and gas path length, resolutions better than 0.2 nm should be accessible at ambient pressure with gas path lengths less than the 15 μm utilized for these experiments.

Copyright
Corresponding author
*Corresponding author. E-mail: smehraeen@gmail.com
**Corresponding author. E-mail: mckeown3@llnl.gov
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

L. Allard , S.H. Overbury , W.C. Bigelow , M.B. Katz , D.P. Nackashi & J. Damiano (2012). Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc Microanal 18, 656666.

R.T.K. Baker & P.S. Harris (1972). Controlled atmosphere electron microscopy. J Phys E Sci Instrum 5, 793797.

D. Bergström , J. Powell & A.F.H. Kaplan (2007). Absorptance of nonferrous alloys to Nd:YLF and Nd:YAG laser light at room temperature. Appl Opt 46, 12901301.

E.D. Boyes & P.L. Gai (1997). Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219232.

N.D. Browning , M.A. Bonds , G.H. Campbell , J.E. Evans , T. LaGrange , K.L. Jungjohann , D.J. Masiel , J. McKeown , S. Mehraeen , B.W. Reed & M. Santala (2012). Recent developments in dynamic transmission electron microscopy. Curr Opin Solid St Mater Sci 16, 2330.

L.-Y. Chang , A.S. Barnard , L.C. Gontard & R.E. Dunin-Borkowski (2010). Resolving the structure of active sites on platinum catalytic nanoparticles. Nano Lett 10, 30733076.

J.F. Creemer , S. Helveg , G.H. Hoveling , S. Ullmann , A.M. Molenbroek , P.M. Sarro & H.W. Zandbergen (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993998.

J.F. Creemer , S. Helveg , P.J. Kooyman , A.M. Molenbroek , H.W. Zandbergen & P.M. Sarro (2010). A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J Microelectromech Syst 19(2), 254264.

A.V. Crewe , M. Isaacson & D. Johnson (1969). A simple scanning electron microscope. Rev Sci Instrum 40, 241.

A.V. Crewe , J. Wall & J. Langmore (1970). Visibility of a single atom. Science 168, 1338.

N. de Jonge , W.C. Bigelow & G.M. Veith (2010). Atmospheric pressure scanning transmission electron microscopy. Nano Lett 10, 10281031.

J.E. Evans , K.L. Jungjohann , N.D. Browning & I. Arslan (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11, 28092813.

P.L. Gai , E.D. Boyes , S. Helveg , P.L. Hansen , S. Giorgio & C.R. Henry (2007). Atomic-resolution environmental transmission electron microscopy for probing gas-solid reactions in heterogeneous catalysis. Mater Res Bull 32, 10441050.

S. Giorgio , S.S. Joao , S. Nitsche , D. Chaudanson , G. Sitja & C.R. Henry (2006). Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows. Ultramicroscopy 106, 503507.

P.L. Hansen , J.B. Wagner , S. Helveg , J.R. Rostrup-Nielsen , B.S. Clausen & H. Topsoe (2002). Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 20532055.

H.G. Heide (1962). Electron microscopic observation of specimens under controlled gas pressure. J Cell Biol 13, 147152.

S. Helveg , C. López-Cartes , J. Sehested , P.L. Hansen , S.C. Bjerne , J.R. Rostrup-Nielsen , F. Abild-Pederson & J.K. Nørskov (2004). Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426429.

R. Henderson , J.M. Baldwin , K.H. Downing , J. Lepault & F. Zemlin (1986). Structure of purple membrane from halobacterium halobium: Recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19, 147178.

A. Howie , L.D. Marks & S.J. Pennycook (1982). New imaging methods for catalyst particles. Ultramicroscopy 8, 163174.

K.L. Jungjohann , J.E. Evans , J. Aguiar , I. Arslan & N.D. Browning (2012). Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc Microanal 18, 621627.

M. Komatsu & H. Mori (2005). In situ HVEM study on copper oxidation using an improved environmental cell. J Electron Microsc 54, 99107.

T.C. Lee , D.K. Dewald , J.A. Eades , I.M. Robertson & H.K. Birnbaum (1991). An environmental cell transmission electron microscope. Rev Sci Instrum 62, 14381444.

K.A. Mkhoyan , S.E. Maccagnano-Zacher , E.J. Kirkland & J. Silcox (2008). Effects of amorphous layers on ADF-STEM imaging. Ultramicroscopy 108, 791803.

P.D. Nellist , M.F. Chisholm , N. Dellby , O.L. Krivanek , M.F. Murfitt , Z.S. Szilagyi , A.R. Lupini , A. Borisevich , W.H. Sides Jr. & S.J. Pennycook (2004). Direct sub-Angstrom imaging of a crystal lattice. Science 305, 1741.

K.Y. Niu , J. Yang , S.A. Kulinich , J. Sun & X.W. Du (2010). Hollow nanoparticles of metal oxides and sulfides: Fast preparation via laser ablation in liquid. Langmuir 26, 1665216657.

G.M. Parkinson (1989). High resolution, in-situ controlled atmosphere transmission electron microscopy (CATEM) of heterogeneous catalysts. Catal Lett 2, 303307.

S.J. Pennycook (1981). Study of supported ruthenium catalysts by STEM. J Microsc 124, 1522.

S.J. Pennycook (1989). Z-contrast STEM for materials science. Ultramicroscopy 30, 5869.

S.J. Pennycook , A. Howie , M.D. Shannon & R. Whyman (1983). Characterization of supported catalysts by high-resolution stem. J Mol Catal 20, 345355.

I.M. Robertson & D. Teter (1998). Controlled environmental transmission electron microscopy. Microsc Res Techniq 42, 260269.

R. Sharma (2005). An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. J Mater Res 20, 16951707.

R. Sharma & K. Weiss (1998). Development of a TEM to study in situ structural and chemical changes at an atomic level during gas-solid interactions at elevated temperatures. Microsc Res Techniq 42, 270280.

M.M.J. Treacy , A. Howie & C.J. Wilson (1978). Z contrast of platinum and palladium catalysts. Philos Mag A 38, 569.

K. Ueda , T. Kawasaki , H. Hasegawa , T. Tanji & M. Ichihashi (2008). First observation of dynamic shape changes of a gold nanoparticle catalyst under reaction gas environment by transmission electron microscopy. Surf Interface Anal 40, 17251727.

R. Wang , P.A. Crozier & R. Sharma (2009). Structural transformation in ceria nanoparticles during redox processes. J Phys Chem C 113, 57005704.

T. Yaguchi , M. Suzuki , A. Watabe , Y. Nagakubo , K. Ueda & T. Kamino (2011). Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM. J Electron Microsc 60, 217225.

M. Zhang , E.A. Olson , R.D. Twesten , J.G. Wen , L.H. Allen , I.M. Robertson & I. Petrov (2005). In situ transmission electron microscopy studies enabled by microelectromechanical system technology. J Mater Res 20, 18021807.

D.S. Zingg & D.M. Hercules (1978). Electron spectroscopy for chemical analysis studies of lead sulfide oxidation. J Phys Chem 82, 19921995.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 40 *
Loading metrics...

Abstract views

Total abstract views: 174 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th July 2017. This data will be updated every 24 hours.