Skip to main content Accessibility help

Structure and Growth of Sialoliths: Computed Microtomography and Electron Microscopy Investigation of 30 Specimens

  • Pedro Nolasco (a1), Ana J. Anjos (a2), João M. Aquino Marques (a2), Fernando Cabrita (a3), Eduardo Carreiro da Costa (a3), António Maurício (a4), Manuel F.C. Pereira (a4), António P. Alves de Matos (a5) and Patricia A. Carvalho (a1)...


Theories have been put forward on the etiology of sialoliths; however, a comprehensive understanding of their growth mechanisms is lacking. In an attempt to fill this gap, the current study has evaluated the internal architecture and growth patterns of a set of 30 independent specimens of sialoliths characterized at different scales by computed microtomography and electron microscopy. Tomography reconstructions showed cores in most of the sialoliths. The cores were surrounded by concentric or irregular patterns with variable degrees of mineralization. Regardless of the patterns, at finer scales the sialoliths consisted of banded and globular structures. The distribution of precipitates in the banded structures is compatible with a Liesegang–Ostwald phenomenon. On the other hand, the globular structures appear to arise from surface tension effects and to develop self-similar features as a result of a viscous fingering process. Electron diffraction patterns demonstrated that Ca- and P-based electrolytes crystallize in a structure close to that of hydroxyapatite. The organic matter contained sulfur with apparent origin from sulfated components of secretory material. These results cast new light on the mechanisms involved in the formation of sialoliths.


Corresponding author

* Corresponding author. E-mail:


Hide All
Alves de Matos, A.P., Carvalho, P.A., Almeida, A., Duarte, L., Vilar, R. & Leitão, J. (2005). Ultrastructural and EDS study of sialoliths of the salivary glands. Microsc Microanal 11, 152153.
Alves de Matos, A.P., Carvalho, P.A., Almeida, A., Duarte, L., Vilar, R. & Leitão, J. (2007). On the structural diversity of sialoliths. Microsc Microanal 13, 390396.
Anneroth, G., Isacsson, G. & Lundquist, P.G. (1979). The mineral content of salivary calculi. A quantitative microradiographic and diffractometric study. Dentomaxillofac Rad 8, 3341.
Ashby, R.A. (1995). The chemistry of sialoliths—Stones and their homes. In Color Atlas and Text of the Salivary Glands: Diseases, Disorders and Surgery, Norman, J.E.B. & McGurk, M. (Eds.), pp. 243–252, 265–266. London: Mosby-Wolfe.
Bodner, L. (1993). Salivary gland calculi: Diagnostic imaging and surgical management. Compendium 14, 572584.
Boskey, A.L., Boyan-Salyers, B.D., Burstein, L.S. & Mandel, I.D. (1981). Lipids associated with mineralization of human submandibular gland sialoliths. Arch Oral Biol 26, 779785.
Capaccio, P., Ottaviani, F., Manzo, R., Schindler, A. & Cesana, B. (2004). Extracorporeal lithotripsy for salivary calculi: A long-term clinical experience. Laryngoscope 114, 10691073.
Damme, V.H., Obrecht, F., Levitz, P., Gatineau, L. & Laroche, C. (1986). Fractal viscous fingering in clay slurries. Nature 320, 731733.
de Temiño, P.R. & Villary Pérezde los Ríos, F. (1948). Calculos salivales. An Esp Odontoestomatol 7, 661673.
Escudier, M. (2001). Epidemiology and aetiology of salivary calculi. In Controversies in the Management of Salivary Gland Disease, McGurk, M. & Renehan, A. (Eds.), pp. 249255. New York: Oxford University Press.
Escudier, M.P., Brown, J.E., Drage, N.A. & McGurk, M. (2003). Extracorporeal shockwave lithotripsy in the management of salivary calculi. Br J Surg 90, 482485.
Feldkamp, L.A., Davis, L.C. & Kress, J.W. (1984). Practical cone-beam algorithm. J Opt Soc Am A 1, 612619.
Giray, C.B., Dogan, M., Akalin, A., Baltrusaitis, J., Chan, D.C., Skinner, H.C. & Dogan, A.U. (2007). Sialolith characterization by scanning electron microscopy and X-ray photoelectron spectroscopy. Scanning 29, 206210.
Gomes, S., Renaudin, G., Mesbah, A., Jallot, E., Bonhomme, C., Babonneau, F. & Nedelec, J.M. (2010). Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: A multi-technique study. Acta Biomater 6, 32643274.
Gopal, R., Calvo, C., Ito, J. & Sabine, W.K. (1974). Crystal structure of synthetic Mg-Whitlockite, Ca18Mg2H2(PO4)14 . Can J Chem 52, 11551164.
Grases, F., Santiago, C., Simonet, B.M. & Costa-Bauzá, A. (2003). Sialolithiasis: Mechanism of calculi formation and etiologic factors. Clin Chim Acta 334, 131136.
Harrison, J.D. (2007). Natural history of chronic sialadenitis and sialolithiasis. In Modern Management Preserving the Salivary Glands, Nahlieli, O., Iro, H., McGurk, M. & Zenk, J. (Eds.), pp. 93135. Herzeliya, Israel: Isradon Publishing House.
Harrison, J.D. (2009). Causes, natural history, and incidence of salivary stones and obstructions. Otolaryngol Clin North Am 42, 927947.
Henisch, H.K. (1986). Liesegang ring formation in gels. J Cryst Growth 76, 279289.
Hornbogen, E. (1989). Fractals in microstructure of metals. Int Mater Rev 34, 277296.
Iro, H., Zenk, J., Escudier, M.P., Nahlieli, O., Capaccio, P., Katz, P., Brown, J. & McGurk, M. (2009). Outcome of minimally invasive management of salivary calculi in 4,691 patients. Laryngoscope 119, 263268.
Isacsson, G. & Hammarström, L. (1983). An enzyme histochemical study of human salivary duct calculi. J Oral Pathol Med 12, 217222.
Karperien, A. (2012). FracLac for ImageJ, version 2.5. Accessed November 15, 2012.
Kasaboğlu, O., Er, N., Tümer, C. & Akkocaoğlu, M. (2004). Micromorphology of sialoliths in submandibular salivary gland: A scanning electron microscope and X-ray diffraction analysis. J Oral Maxillofac Surg 62, 12531258.
Kilaas, R. (1987). Interactive simulation of high resolution electron micrographs. In 45th Annual Meeting of the Electron Microscopy Society of America, Bailey, G.W. (Ed.), pp. 6669. San Francisco, CA: San Francisco Press.
Kinoshita, H., Miyoshi, N., Miyoshi, K., Ogawa, T., Ogasawara, T., Kitagawa, Y., Itoh, H. & Sano, K. (2008). Phosphate and amide III mapping in sialoliths with Raman microspectroscopy. J Raman Spectrosc 39, 349353.
Kraus, W. & Noize, G. (1996). POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29, 301303.
Kutta, H., May, J., Jaehne, M., Münscher, A. & Paulsen, F.P. (2006). Antimicrobial defence mechanisms of the human parotid duct. J Anat 208, 609619.
Lee, L.T. & Wong, Y.K.D. (2010). Pathogenesis and diverse histologic findings of sialolithiasis in minor salivary glands. J Oral Maxillofac Surg 68, 465470.
Liesegang, R.E. (1896). Ueber einige Eigenschaften von Gallerten. Naturwiss Wochenschr 11, 353362.
Lustmann, J. & Shteyer, A. (1981). Salivary calculi: Ultrastructural morphology and bacterial etiology. J Dent Res 60, 13861395.
Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. San Francisco, CA: W.H Freeman and Co.
Nolasco, P., Anjos, A.J., Marques, J.M.A., Cabrita, F., Costa, E.C., Alves de Matos, A.P. & Carvalho, P.A. (2012). Structural characterization of salivary calculi. In Bioengineering (ENBENG), 2012 IEEE 2nd Portuguese Meeting, Coimbra, Portugal , pp. 15. IEEE.
Ostwald, W. (1925). Zur Theorie der Liesegang'schen Ringe. Kolloid-Z 36, 380390.
Pereira, L.M. (2010). Fractal pharmacokinetics. Comput Math Methods Med 11, 161184.
Sabot, J.F., Gustin, M.P., Delahougue, K., Faure, F., Machon, C. & Hartmann, D.J. (2012). Analytical investigation of salivary calculi, by mid-infrared spectroscopy. Analyst 137, 20952100.
Sakae, T., Yamamoto, H. & Hirai, G. (1981). Mode of occurrence of brushite and whitlockite in a sialolith. J Dent Res 60, 842844.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nat Methods 9, 676682.
Schmitz, S., Zengel, P., Alvir, I., Andratschke, M., Berghaus, A. & Lang, S. (2008). Long-term evaluation of extracorporeal shock wave lithotripsy in the treatment of salivary stones. J Laryngol Otol 122, 6571.
Seifert, G. (1996). Oralpathologie I: Pathologie der Speicheldrüsen. Berlin: Springer.
Siddiqui, S.J. (2002). Sialolithiasis: An unusually large submandibular salivary stone. Br Dent J 193, 8991.
Sinha, S. & Tarafdar, S. (2009). Viscous fingering patterns and evolution of their fractal dimension. Ind Eng Chem Res 48, 88378841.
SkyScan (2005). SkyScan 1172 Desktop X-Ray Microtomography Instruction Manual. Aartselaar, Belgium: N.V. SkyScan.
Stevenson, K., Ferer, M., Bromhal, G.S., Gump, J., Wilder, J. & Smith, D.H. (2006). 2-D network model simulations of miscible two-phase flow displacements in porous media: Effects of heterogeneity and viscosity. Phys A (Amsterdam, Neth) 15, 724.
Szalma, J., Böddi, K., Lempel, E., Sieroslawska, A.F., Szabó, Z., Harfouche, R., Olasz, L., Takátsy, A. & Guttman, A. (2012). Proteomic and scanning electron microscopic analysis of submandibular sialoliths. Clin Oral Invest. doi:10.1007/s00784-012-0870-6.
Tanaka, N., Ichinose, S., Adachi, Y., Mimura, M. & Kimijima, Y. (2003). Ultrastructural analysis of salivary calculus in combination with X-ray microanalysis. Med Electron Microsc 36, 120126.
Teymoortash, A., Wollstein, A.C., Lippert, B.M., Peldszus, R. & Werner, J.A. (2002). Bacteria and pathogenesis of human salivary calculus. Acta Oto-Laryngol 122, 210214.
Washio, J., Sato, T., Koseki, T. & Takahashi, N. (2005). Hydrogen sulfide-producing bacteria in tongue biofilm and their relationship with oral malodour. J Med Microbiol 54, 889895.
Yamamoto, H., Sakae, T., Takagi, M. & Otake, S. (1984). Scanning electron microscopic and X-ray microdiffractometeric studies on sialolith-crystals in human submandibular glands. Acta Pathol Jpn 34, 4753.
Zenk, J., Bozzato, A., Winter, M., Gottwald, F. & Iro, H. (2004). Extracorporeal shock wave lithotripsy of submandibular stones: Evaluation after 10 years. Ann Otol, Rhinol, Laryngol 113, 378383.
Zhang, J.-H. & Liu, Z.-H. (1998). Study of the relationship between fractal dimension and viscosity ratio for viscous fingering with a modified DLA model. J Pet Sci Eng 21, 123128.


Type Description Title

Nolasco et al. supplementary movie
Movie 1

 Video (2.8 MB)
2.8 MB

Nolasco et al. supplementary movie
Movie 2

 Video (8.3 MB)
8.3 MB

Nolasco et al. supplementary movie
Movie 3

 Video (5.4 MB)
5.4 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed