Skip to main content Accessibility help

Thickness Measurements Using Photonic Modes in Monochromated Electron Energy-Loss Spectroscopy

  • Aycan Yurtsever (a1), Martin Couillard (a1), Jerome K. Hyun (a1) and David A. Muller (a1) (a2)

Characteristic energies of photonic modes are a sensitive function of a nanostructures’ geometrical parameters. In the case of translationally invariant planar waveguides, the eigen-energies reside in the infrared to ultraviolet parts of the optical spectrum and they sensitively depend on the thickness of the waveguide. Using swift electrons and the inherent Cherenkov radiation in dielectrics, the energies of such photonic states can be effectively probed via monochromated electron energy-loss spectroscopy (EELS). Here, by exploiting the strong photonic signals in EELS with 200 keV electrons, we correlate the energies of waveguide peaks in the 0.5–3.5 eV range with planar thicknesses of the samples. This procedure enables us to measure the thicknesses of cross-sectional transmission electron microscopy samples over a 1–500 nm range and with best-case accuracies below ±2%. The measurements are absolute with the only requirement being the optical dielectric function of the material. Furthermore, we provide empirical formulation for rapid and direct thickness estimations for a 50–500 nm range. We demonstrate the methodology for two semiconducting materials, silicon and gallium arsenide, and discuss how it can be applied to other dielectrics that produce strong optical fingerprints in EELS. The asymptotic form of the loss function for two-dimensional materials is also discussed.

Corresponding author
* Corresponding author.
Hide All

Current address: Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA

Current address: National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6.

Hide All
Allen, S.M. (1981). Foil thickness measurements from convergent-beam diffraction patterns. Philos Mag A 43, 325335.
Berriman, J., Bryan, R.K., Freeman, R. & Leonard, K.R. (1984). Methods for specimen thickness determination in electron microscopy. Ultramicroscopy 13, 351364.
Castro-Fernandez, F.R., Sellars, C.M. & Whiteman, J.A. (1985). Measurement of foil thickness and extinction distance by convergent beam transmission electron microscopy. Philos Mag A 52, 289303.
Cha, J.J., Yu, Z., Smith, E., Couillard, M., Fan, S. & Muller, D.A. (2010). Mapping local optical densities of states in silicon photonic structures with nanoscale electron spectroscopy. Phys Rev B 81, 113102.
Chen, C.H. & Silcox, J. (1975). Detection of optical surface guided modes in thin graphite films by high-energy electron scattering. Phys Rev Lett 35, 390393.
Chen, C.H., Silcox, J. & Vincent, R. (1975). Electron-energy losses in silicon: Bulk and surface plasmons and Čerenkov radiation. Phys Rev B 12, 6471.
Couillard, M., Yurtsever, A. & Muller, D.A. (2008). Competition between bulk and interface plasmonic modes in valence electron energy-loss spectroscopy of ultrathin SiO2 gate stacks. Phys Rev B 77, 085318.
Couillard, M., Yurtsever, A. & Muller, D.A. (2010). Interference effects on guided Cherenkov emission in silicon from perpendicular, oblique, and parallel boundaries. Phys Rev B 81, 195315.
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.
Egerton, R.F. & Cheng, S.C. (1987). Measurement of local thickness by electron energy-loss spectroscopy. Ultramicroscopy 21, 231244.
Erni, R. & Browning, N.D. (2008). The impact of surface and retardation losses on valence electron energy-loss spectroscopy. Ultramicroscopy 108, 8499.
García de Abajo, F.J. & Kociak, M. (2008 a). Electron energy-gain spectroscopy. New J Phys 10, 073035.
García de Abajo, F.J. & Kociak, M. (2008 b). Probing the photonic local density of states with electron energy loss spectroscopy. Phys Rev Lett 100, 106804.
García de Abajo, F.J., Pattantyus-Abraham, A.G., Zabala, N., Rivacoba, A., Wolf, M.O. & Echenique, P.M. (2003). Cherenkov effect as a probe of photonic nanostructures. Phys Rev Lett 91, 143902.
Horita, Z., Ichitani, K., Sano, T. & Nemoto, M. (1989). Applicability of the differential X-ray absorption method to the determinaitons of foil thickness and local composition in the analytical electron microscope. Philos Mag A 5, 939952.
Hosoi, J., Oikawa, T., Inoue, M., Kokubo, Y. & Hama, K. (1981). Measurement of partial specific thickness (net thickness) of critical-point-dried cultured fibroblast by energy analysis. Ultramicroscopy 7, 147153.
Hyun, J.K., Couillard, M., Rajendran, P., Liddell, C.M. & Muller, D.A. (2008). Measuring far-ultraviolet whispering gallery modes with high energy electrons. Appl Phys Lett 93, 243106.
Krivanek, O.L., Lovejoy, T.C., Dellby, N. & Carpenter, R.W. (2013). Monochromated STEM with a 30 meV-wide, atom-sized electron probe. Microscopy 62, 321.
Kröger, E. (1968). Berechnung der Energieverluste schneller Elektronen in dünnen Schichten mit Retardierung. Z Physik 216, 115135.
Lazar, S., Botton, G.A. & Zandbergen, H.W. (2006). Enhancement of resolution in core-loss and low-loss spectroscopy in a monochromated microscope. Ultramicroscopy 106, 10911103.
Mitterbauer, C., Kothleitner, G., Grogger, W., Zandbergen, H., Freitag, B., Tiemeijer, P. & Hofer, F. (2003). Electron energy-loss near-edge structures of 3D transition metal oxides recorded at high-energy resolution. Ultramicroscopy 96, 469480.
Mkhoyan, K.A., Babinec, T., Maccagnano, S.E., Kirkland, E.J. & Silcox, J. (2007). Separation of bulk and surface-losses in low-loss EELS measurements in STEM. Ultramicroscopy 107, 345355.
Muller, D.A. & Silcox, J. (1995). Delocalization in inelastic scattering. Ultramicroscopy 59, 195213.
Palik, E.D. (1998). Handbook of Optical Constants. Orlando, FL: Academic Press.
Ritchie, R.H. (1957). Plasma losses by fast electrons in thin films. Phys Rev 106, 874881.
Rossouw, D., Couillard, M., Vickery, J., Kumacheva, E. & Botton, G.A. (2011). Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe. Nano Lett 11, 14991504.
Sakoda, K. (2001). Optical Properties of Photonic Crystals. Berlin and New York: Springer.
Schaffer, B., Riegler, K., Kothleitner, G., Grogger, W. & Hofer, F. (2009). Monochromated, spatially resolved electron energy-loss spectroscopic measurements of gold nanoparticles in the plasmon range. Micron 40, 269273.
Scott, V.D. & Love, G. (1987). Foil thickness measurements in transmission electron microscopy. Mater Sci Technol 3, 600608.
Stöger-Pollach, M., Franco, H., Schattschneider, P., Lazar, S., Schaffer, B., Grogger, W. & Zandbergen, H.W. (2006). Čerenkov losses: A limit for bandgap determination and Kramers–Kronig analysis. Micron 37, 396402.
Stöger-Pollach, M., Laister, A. & Schattschneider, P. (2008). Treating retardation effects in valence EELS spectra for Kramers–Kronig analysis. Ultramicroscopy 108, 439444.
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy: A Textbook for Materials Science. New York: Plenum Press.
Yurtsever, A. (2008). Three-dimensional plasmon imaging and photonic states of silicon nano-composites by fast electrons. Doctoral dissertation, Cornell University.
Yurtsever, A., Couillard, M. & Muller, D.A. (2008). Formation of guided Cherenkov radiation in silicon-based nanocomposites. Phys Rev Lett 100, 217402.
Yurtsever, A., van der Veen, R.M. & Zewail, A.H. (2012). Subparticle ultrafast spectrum imaging in 4D electron microscopy. Science 335, 5964.
Zhang, H.-R., Egerton, R.F. & Malac, M. (2012). Local thickness measurement through scattering contrast and electron energy-loss spectroscopy. Micron 43, 815.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed