Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 11
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Lu, Zonghuan Frey, David M. Merkh, Thomas Lord, Robert Washington, Morris A. and Lu, Toh-Ming 2016. Resistivity of epitaxial copper nanolines with trapezoidal cross-section. Thin Solid Films, Vol. 599, p. 187.

    Ercius, Peter Alaidi, Osama Rames, Matthew J. and Ren, Gang 2015. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research. Advanced Materials, Vol. 27, Issue. 38, p. 5638.

    Haberfehlner, Georg Serra, Raphaël Cooper, David Barraud, Sylvain and Bleuet, Pierre 2014. 3D spatial resolution improvement by dual-axis electron tomography: Application to tri-gate transistors. Ultramicroscopy, Vol. 136, p. 144.

    Altantzis, Thomas Goris, Bart Sánchez-Iglesias, Ana Grzelczak, Marek Liz-Marzán, Luis M. and Bals, Sara 2013. Quantitative Structure Determination of Large Three-Dimensional Nanoparticle Assemblies. Particle & Particle Systems Characterization, Vol. 30, Issue. 1, p. 84.

    Ketenoğlu, D. and Ünal, B. 2013. Influence of surface roughness on the electrical conductivity of semiconducting thin films. Physica A: Statistical Mechanics and its Applications, Vol. 392, Issue. 14, p. 3008.

    Liu, Yuzi Schreiber, Daniel K. Petford-Long, Amanda K. and Gao, Kai-Zhong 2012. Three-dimensional characterization of near-field transducers by electron tomography. Materials Characterization, Vol. 72, p. 104.

    Robles, Marcelo E. Gonzalez-Fuentes, Claudio A. Henriquez, Ricardo Kremer, German Moraga, Luis Oyarzun, Simón Suarez, Marco Antonio Flores, Marcos and Munoz, Raul C. 2012. Resistivity of thin gold films on mica induced by electron–surface scattering: Application of quantitative scanning tunneling microscopy. Applied Surface Science, Vol. 258, Issue. 8, p. 3393.

    Xin, Huolin L. Zhu, Ye and Muller, David A. 2012. Determining On-Axis Crystal Thickness with Quantitative Position-Averaged Incoherent Bright-Field Signal in an Aberration-Corrected STEM. Microscopy and Microanalysis, Vol. 18, Issue. 04, p. 720.

    Munoz, Raul C. Gonzalez-Fuentes, Claudio A. Henriquez, Ricardo Espinosa, Andres Kremer, German Moraga, Luis Ibañez-Landeta, Antonio Bahamondes, Sebastian Donoso, Sebastian and Flores, Marcos 2011. Resistivity of thin gold films on mica induced by electron-surface scattering from a self-affine fractal surface. Journal of Applied Physics, Vol. 110, Issue. 2, p. 023710.

    Graham, R. L. Alers, G. B. Mountsier, T. Shamma, N. Dhuey, S. Cabrini, S. Geiss, R. H. Read, D. T. and Peddeti, S. 2010. Resistivity dominated by surface scattering in sub-50 nm Cu wires. Applied Physics Letters, Vol. 96, Issue. 4, p. 042116.

    Henriquez, Ricardo Cancino, Simon Espinosa, Andres Flores, Marcos Hoffmann, Thomas Kremer, German Lisoni, Judit G. Moraga, Luis Morales, Roberto Oyarzun, Simon Suarez, Marco Antonio Zúñiga, Alejandro and Munoz, Raul C. 2010. Electron grain boundary scattering and the resistivity of nanometric metallic structures. Physical Review B, Vol. 82, Issue. 11,


Three-Dimensional Measurement of Line Edge Roughness in Copper Wires Using Electron Tomography

  • Peter Ercius (a1), Lynne M. Gignac (a2), C.-K. Hu (a2) and David A. Muller (a1)
  • DOI:
  • Published online: 01 May 2009

Electrical interconnects in integrated circuits have shrunk to sizes in the range of 20–100 nm. Accurate measurements of the dimensions of these nanowires are essential for identifying the dominant electron scattering mechanisms affecting wire resistivity as they continue to shrink. We report a systematic study of the effect of line edge roughness on the apparent cross-sectional area of 90 nm Cu wires with a TaN/Ta barrier measured by conventional two-dimensional projection imaging and three-dimensional electron tomography. Discrepancies in area measurements due to the overlap of defects along the wire's length lead to a 5% difference in the resistivities predicted by the two methods. Tomography of thick cross sections is shown to give a more accurate representation of the original structure and allows more efficient sampling of the wire's cross-sectional area. The effect of roughness on measurements from projection images is minimized for cross-section thicknesses less than 50 nm, or approximately half the spatial frequency of the roughness variations along the length of the investigated wires.

Corresponding author
Corresponding author. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. Bals , C. Kisielowski , M. Croitoru & G.V. Tendeloo (2005). Tomography using annular dark field imaging in TEM. Microsc Microanal 11, 21182119.

W.F.A. Besling , M. Broekaart , V. Arnal & J. Torres (2004). Line resistance behaviour in narrow lines patterned by a TiN hard mask spacer for 45 nm node interconnects. Microelectron Eng 76, 167174.

J.J. Cha , M. Weyland , J.-F. Briere , I.P. Daykov , T.A. Arias & D.A. Muller (2007). Three-dimensional imaging of carbon nanotubes deformed by metal islands. Nano Lett 7(12), 37703773.

P. Ercius , M. Weyland , D.A. Muller & L.M. Gignac (2006). Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography. Appl Phys Lett 88, 243116.

P. Gilbert (1972). Iterative methods for the three-dimensional reconstruction of an object for projections. J Theor Biol 36(1), 105117.

P.W. Hawkes (1992). The electron microscope as a structure projector. In Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope, J. Frank (Ed.), pp. 1738. New York: Plenum Press.

K. Hinode , Y. Hanaoka , K.-I. Takeda & S. Kondo (2001). Resistivity increase in ultrafine-line copper conductor for ULSIs. Jpn J Appl Phys 40(10B), L1097L1099.

H. Jinnai , Y. Nishikawa , R.J. Spontak , S.D. Smith , D.A. Agard & T. Hashimoto (2000). Direct measurement of interfacial curvature distributions in a bicontinuous block copolymer morphology. Phys Rev Lett 84(3), 518.

N. Kawase , M. Kato , H. Nishioka & H. Jinnai (2007). Transmission electron microtomography without the “missing wedge” for quantitative structural analysis. Ultramicroscopy 107(1), 815.

C.-U. Kim , J. Park , N. Michael , P. Gillespie & R. Augur (2003). Study of electron-scattering mechanism in nanoscale Cu interconnects. J Elect Mater 32(10), 982987.

H.S. Kim , S.O. Hwang , Y. Myung , J. Park , S.Y. Bae & J.P. Ahn (2008). Three-dimensional structure of helical and zigzagged nanowires using electron tomography. Nano Lett 8(2), 551557.

E.J. Kirkland (1998). Advanced Computing in Electron Microscopy. New York: Plenum Press.

E.J. Kirkland , R.F. Loane & J. Silcox (1987). Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 7796.

A.J. Koster , U. Ziese , A.J. Verkleij , A.H. Janssen & K.P. de Jong (2000). Three-dimensional electron microscopy: A novel imaging and characterization technique with nanometer scale resolution for materials science. J Phys Chem B 104, 93689370.

L.H.A. Leunissen , W. Zhang , W. Wu & S.H. Brongersma (2006). Impact of line edge roughness on copper interconnects. J Vac Sci Technol B 24(4), 18591862.

H. Marom , J. Mullin & M. Eizenberg (2006). Size-dependent resistivity of nanometric copper wires. Phys Rev B 74, 045411.

P.A. Midgley & M. Weyland (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413431.

D.L. Misell (1977). Conventional and scanning transmission electron microscopy: Image contrast and radiation damage. J Phys D Appl Phys 10(8), 10851107.

D.A. Muller & J. Silcox (1995). Radiation damage of Ni3Al by 100 keV electrons. Philos Mag A 71(6), 13751387.

J.J. Plombon , E. Andideh , V.M. Dubin & J. Maiz (2006). Influence of phonon, geometry, impurity, and grain size on copper line resistivity. Appl Phys Lett 89, 113124.

W. Steinhogl , G. Schindler , G. Steinlesberger & M. Engelhardt (2002). Size-dependent resistivity of metallic wires in the mesoscopic range. Phys Rev B 66, 075414.

W. Steinhogl , G. Schindler , M. Traving & M. Engelhardt (2004). Impact of line edge roughness on the resistivity of nanometer-scale interconnects. Microelectron Eng 76, 126130.

G.E.S. Toombes , S. Mahajan , M. Weyland , A. Jain , P. Du , M. Kamperman , S.M. Gruner , D.A. Muller & U. Wiesner (2008). Self-assembly of four-layer woodpile structure from zigzag ABC copolymer/aluminosilicate concertinas. Macromolecules 41(3), 852859.

M.A. Verheijen , R.E. Algra , M.T. Borgstrom , G. Immink , E. Sourty , W.J.P. van Enckevort , E. Vlieg & E.P.A.M. Bakkers (2007). Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography. Nano Lett 7(10), 30513055.

W. Wu , S.H. Brongersma , M.V. Hove & K. Maex (2004). Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions. Appl Phys Lett 84, 2838.

H.B. Zhang , X.L. Zhang , Y. Wang & A. Takaoka (2007a). Tomography experiment of an integrated circuit specimen using 3 MeV electrons in the transmission electron microscope. Rev Sci Instrum 78, 013701.

W. Zhang , S.H. Brongersma , Z. Li , D. Li , O. Richard & K. Maex (2007b). Analysis of the size effect in electroplated fine copper wires and a realistic assessment to model copper resistivity. J App Phys 101, 063703.

Z. Zhang (2007). Surface effects in the energy loss near edge structure of different cobalt oxides. Ultramicroscopy 107, 598693.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *