Skip to main content
    • Aa
    • Aa

Three-Dimensional Measurement of Line Edge Roughness in Copper Wires Using Electron Tomography

  • Peter Ercius (a1), Lynne M. Gignac (a2), C.-K. Hu (a2) and David A. Muller (a1)

Electrical interconnects in integrated circuits have shrunk to sizes in the range of 20–100 nm. Accurate measurements of the dimensions of these nanowires are essential for identifying the dominant electron scattering mechanisms affecting wire resistivity as they continue to shrink. We report a systematic study of the effect of line edge roughness on the apparent cross-sectional area of 90 nm Cu wires with a TaN/Ta barrier measured by conventional two-dimensional projection imaging and three-dimensional electron tomography. Discrepancies in area measurements due to the overlap of defects along the wire's length lead to a 5% difference in the resistivities predicted by the two methods. Tomography of thick cross sections is shown to give a more accurate representation of the original structure and allows more efficient sampling of the wire's cross-sectional area. The effect of roughness on measurements from projection images is minimized for cross-section thicknesses less than 50 nm, or approximately half the spatial frequency of the roughness variations along the length of the investigated wires.

Corresponding author
Corresponding author. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. Bals , C. Kisielowski , M. Croitoru & G.V. Tendeloo (2005). Tomography using annular dark field imaging in TEM. Microsc Microanal 11, 21182119.

S. Bals , W. Tirry , R. Geurts , Z. Yang & D. Schryvers (2007). High-quality sample preparation by low kV FIB thinning for analytical TEM measurements. Microsc Microanal 13(2), 8086.

W.F.A. Besling , M. Broekaart , V. Arnal & J. Torres (2004). Line resistance behaviour in narrow lines patterned by a TiN hard mask spacer for 45 nm node interconnects. Microelectron Eng 76, 167174.

J.J. Cha , M. Weyland , J.-F. Briere , I.P. Daykov , T.A. Arias & D.A. Muller (2007). Three-dimensional imaging of carbon nanotubes deformed by metal islands. Nano Lett 7(12), 37703773.

P. Ercius , M. Weyland , D.A. Muller & L.M. Gignac (2006). Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography. Appl Phys Lett 88, 243116.

P. Gilbert (1972). Iterative methods for the three-dimensional reconstruction of an object for projections. J Theor Biol 36(1), 105117.

P.W. Hawkes (1992). The electron microscope as a structure projector. In Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope, J. Frank (Ed.), pp. 1738. New York: Plenum Press.

K. Hinode , Y. Hanaoka , K.-I. Takeda & S. Kondo (2001). Resistivity increase in ultrafine-line copper conductor for ULSIs. Jpn J Appl Phys 40(10B), L1097L1099.

H. Jinnai , Y. Nishikawa , R.J. Spontak , S.D. Smith , D.A. Agard & T. Hashimoto (2000). Direct measurement of interfacial curvature distributions in a bicontinuous block copolymer morphology. Phys Rev Lett 84(3), 518.

N. Kawase , M. Kato , H. Nishioka & H. Jinnai (2007). Transmission electron microtomography without the “missing wedge” for quantitative structural analysis. Ultramicroscopy 107(1), 815.

C.-U. Kim , J. Park , N. Michael , P. Gillespie & R. Augur (2003). Study of electron-scattering mechanism in nanoscale Cu interconnects. J Elect Mater 32(10), 982987.

H.S. Kim , S.O. Hwang , Y. Myung , J. Park , S.Y. Bae & J.P. Ahn (2008). Three-dimensional structure of helical and zigzagged nanowires using electron tomography. Nano Lett 8(2), 551557.

E.J. Kirkland (1998). Advanced Computing in Electron Microscopy. New York: Plenum Press.

E.J. Kirkland , R.F. Loane & J. Silcox (1987). Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 7796.

A.J. Koster , U. Ziese , A.J. Verkleij , A.H. Janssen & K.P. de Jong (2000). Three-dimensional electron microscopy: A novel imaging and characterization technique with nanometer scale resolution for materials science. J Phys Chem B 104, 93689370.

L.H.A. Leunissen , W. Zhang , W. Wu & S.H. Brongersma (2006). Impact of line edge roughness on copper interconnects. J Vac Sci Technol B 24(4), 18591862.

H. Marom , J. Mullin & M. Eizenberg (2006). Size-dependent resistivity of nanometric copper wires. Phys Rev B 74, 045411.

P.A. Midgley & M. Weyland (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413431.

D.L. Misell (1977). Conventional and scanning transmission electron microscopy: Image contrast and radiation damage. J Phys D Appl Phys 10(8), 10851107.

D.A. Muller & J. Silcox (1995). Radiation damage of Ni3Al by 100 keV electrons. Philos Mag A 71(6), 13751387.

J.J. Plombon , E. Andideh , V.M. Dubin & J. Maiz (2006). Influence of phonon, geometry, impurity, and grain size on copper line resistivity. Appl Phys Lett 89, 113124.

W. Steinhogl , G. Schindler , G. Steinlesberger & M. Engelhardt (2002). Size-dependent resistivity of metallic wires in the mesoscopic range. Phys Rev B 66, 075414.

W. Steinhogl , G. Schindler , M. Traving & M. Engelhardt (2004). Impact of line edge roughness on the resistivity of nanometer-scale interconnects. Microelectron Eng 76, 126130.

G.E.S. Toombes , S. Mahajan , M. Weyland , A. Jain , P. Du , M. Kamperman , S.M. Gruner , D.A. Muller & U. Wiesner (2008). Self-assembly of four-layer woodpile structure from zigzag ABC copolymer/aluminosilicate concertinas. Macromolecules 41(3), 852859.

M.A. Verheijen , R.E. Algra , M.T. Borgstrom , G. Immink , E. Sourty , W.J.P. van Enckevort , E. Vlieg & E.P.A.M. Bakkers (2007). Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography. Nano Lett 7(10), 30513055.

W. Wu , S.H. Brongersma , M.V. Hove & K. Maex (2004). Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions. Appl Phys Lett 84, 2838.

H.B. Zhang , X.L. Zhang , Y. Wang & A. Takaoka (2007a). Tomography experiment of an integrated circuit specimen using 3 MeV electrons in the transmission electron microscope. Rev Sci Instrum 78, 013701.

W. Zhang , S.H. Brongersma , Z. Li , D. Li , O. Richard & K. Maex (2007b). Analysis of the size effect in electroplated fine copper wires and a realistic assessment to model copper resistivity. J App Phys 101, 063703.

Z. Zhang (2007). Surface effects in the energy loss near edge structure of different cobalt oxides. Ultramicroscopy 107, 598693.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 117 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd September 2017. This data will be updated every 24 hours.