Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-27T14:31:00.161Z Has data issue: false hasContentIssue false

Three-Phase 3D Reconstruction of a LiCoO2 Cathode via FIB-SEM Tomography

Published online by Cambridge University Press:  14 January 2016

Zhao Liu
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
Yu-chen K. Chen-Wiegart
Affiliation:
Photon Science Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
Jun Wang
Affiliation:
Photon Science Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
Scott A. Barnett*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
Katherine T. Faber*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
Get access

Abstract

Three-phase three-dimensional (3D) microstructural reconstructions of lithium-ion battery electrodes are critical input for 3D simulations of electrode lithiation/delithiation, which provide a detailed understanding of battery operation. In this report, 3D images of a LiCoO2 electrode are achieved using focused ion beam-scanning electron microscopy (FIB-SEM), with clear contrast among the three phases: LiCoO2 particles, carbonaceous phases (carbon and binder) and the electrolyte space. The good contrast was achieved by utilizing an improved FIB-SEM sample preparation method that combined infiltration of the electrolyte space with a low-viscosity silicone resin and triple ion-beam polishing. Morphological parameters quantified include phase volume fraction, surface area, feature size distribution, connectivity, and tortuosity. Electrolyte tortuosity was determined using two different geometric calculations that were in good agreement. The electrolyte tortuosity distribution versus position within the electrode was found to be highly inhomogeneous; this will lead to inhomogeneous electrode lithiation/delithiation at high C-rates that could potentially cause battery degradation.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: California Institute of Technology, MC 138-78, Pasadena, CA 91125, USA.

References

Abramoff, M.D., Magalhães, P.J. & Ram, S.J. (2004). Image processing with ImageJ. Biophotonics Int 11(7), 3642.Google Scholar
Babu, S.K., Mohamed, A.I., Whitacre, J.F. & Litster, S. (2015). Multiple imaging mode X-ray computed tomography for distinguishing active and inactive phases in lithium-ion battery cathodes. J Power Sources 238, 314319.Google Scholar
Chen-Wiegart, Y.-C.K., Demike, R., Erdonmez, C., Thornton, K., Barnett, S.A. & Wang, J. (2014). Tortuosity characterization of 3D microstructure at nano-scale for energy storage and conversion materials. J Power Sources 249, 349356.Google Scholar
Chen-Wiegart, Y.-C.K., Liu, Z., Faber, K.T., Barnett, S.A. & Wang, J. (2013). 3D analysis of a LiCoO2-Li(Ni1/3Mn1/3Co1/3)O2 Li-ion battery positive electrode using X-ray nano-tomography. Electrochem Commun 28, 127130.Google Scholar
Cooper, S.J., Eastwood, D.S., Gelb, J., Damblanc, G., Brett, D.J.L., Bradley, R.S., Withers, P.J., Lee, P.D., Marquis, A.J., Brandon, N.P. & Shearing, P.R. (2014). Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries. J Power Sources 247, 10331039.Google Scholar
Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numer Math 1, 269271.Google Scholar
Doyle, M., Fuller, T.F. & Newman, J. (1993). Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140(6), 15261533.Google Scholar
Doyle, M. & Newman, J. (1995). The use of mathematical modeling in the design of lithium/polymer battery systems. Electrochimica Acta 40(13), 21912196.Google Scholar
Ebner, M., Chung, D.-W., García, R.E. & Wood, V. (2013 a). Tortuosity anisotropy in lithium-ion battery electrodes. Adv Energy Mater 4(5), 1301278.Google Scholar
Ebner, M., Geldmacher, F., Marone, F., Stampanoni, M. & Wood, V. (2013 b). X-Ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv Energy Mater 3(7), 845850.Google Scholar
Ebner, M., Marone, F., Stampanoni, M. & Wood, V. (2013 c). Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342(6159), 716720.Google Scholar
Ender, M., Joos, J., Carraro, T. & Ivers-Tiffée, E. (2011). Three-dimensional reconstruction of a composite cathode for lithium-ion cells. Electrochem Commun 13(2), 166168.Google Scholar
Ender, M., Joos, J., Carraro, T. & Ivers-Tiffee, E. (2012). Quantitative characterization of LiFePO4 cathodes reconstructed by FIB/SEM tomography. J Electrochem Soc 159(7), A972A980.Google Scholar
Ender, M., Joos, J., Weber, A. & Ivers-Tiffée, E. (2014). Anode microstructures from high-energy and high-power lithium-ion cylindrical cells obtained by X-ray nano-tomography. J Power Sources 269, 912919.Google Scholar
Fergus, J.W. (2010). Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4), 939954.Google Scholar
Goldin, G.M., Colclasure, A.M., Wiedemann, A.H. & Kee, R.J. (2012). Three-dimensional particle-resolved models of Li-ion batteries to assist the evaluation of empirical parameters in one-dimensional models. Electrochimica Acta 64, 118129.Google Scholar
Hutzenlaub, T., Asthana, A., Becker, J., Wheeler, D.R., Zengerle, R. & Thiele, S. (2013). FIB/SEM-based calculation of tortuosity in a porous LiCoO2 cathode for a Li-ion battery. Electrochem Commun 27, 7780.Google Scholar
Hutzenlaub, T., Thiele, S., Paust, N., Spotnitz, R., Zengerle, R. & Walchshofer, C. (2014). Three-dimensional electrochemical Li-ion battery modelling featuring a focused ion-beam/scanning electron microscopy based three-phase reconstruction of a LiCoO2 cathode. Electrochimica Acta 115, 131139.Google Scholar
Hutzenlaub, T., Thiele, S., Zengerle, R. & Ziegler, C. (2012). Three-dimensional reconstruction of a LiCoO2 Li-ion battery cathode. Electrochem Solid State Lett 15(3), A33.Google Scholar
Kremer, J.R., Mastronarde, D.N. & Mclntosh, J.R. (1996). Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116, 7176.Google Scholar
Liu, Z., Scott Cronin, J., Chen-Wiegart, Y.-c.K., Wilson, J.R., Yakal-Kremski, K.J., Wang, J., Faber, K.T. & Barnett, S.A. (2013). Three-dimensional morphological measurements of LiCoO2 and LiCoO2/Li(Ni1/3Mn1/3Co1/3)O2 lithium-ion battery cathodes. J Power Sources 227, 267274.Google Scholar
Malavé, V., Berger, J.R., Zhu, H. & Kee, R.J. (2014). A computational model of the mechanical behavior within reconstructed LixCoO2 Li-ion battery cathode particles. Electrochimica Acta 130, 707717.Google Scholar
Münch, B. & Holzer, L. (2008). Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion. J Am Ceram Soc 91(12), 40594067.Google Scholar
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1), 6266.Google Scholar
Shanti, N.O., Chan, V.W.L., Stock, S.R., De Carlo, F., Thornton, K. & Faber, K.T. (2014). X-ray micro-computed tomography and tortuosity calculations of percolating pore networks. Acta Materialia 71, 126135.Google Scholar
Shearing, P.R., Howard, L.E., Jørgensen, P.S., Brandon, N.P. & Harris, S.J. (2010). Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery. Electrochem Commun 12(3), 374377.Google Scholar
Stephenson, D.E., Walker, B.C., Skelton, C.B., Gorzkowski, E.P., Rowenhorst, D.J. & Wheeler, D.R. (2011). Modeling 3D microstructure and ion transport in porous Li-ion battery electrodes. J Electrochem Soc 158(7), A781.Google Scholar
Vetter, J., Novak, P., Wagner, M.R., Veit, C., Moller, K.-C., Besenhard, J.O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C. & Hammouche, A. (2005). Ageing mechanisms in lithiuim ion batteries. J Power Sources 147, 269281.Google Scholar
Wang, J., Chen-Wiegart, Y.C. & Wang, J. (2014). In situ three-dimensional synchrotron X-ray nanotomography of the (De)lithiation processes in tin anodes. Angewandte Chemie 53, 44604464.Google Scholar
Wiedemann, A.H., Goldin, G.M., Barnett, S.A., Zhu, H. & Kee, R.J. (2013). Effects of three-dimensional cathode microstructure on the performance of lithium-ion battery cathodes. Electrochimica Acta 88, 580588.Google Scholar
Wilson, J.R., Cronin, J.S., Barnett, S.A. & Harris, S.J. (2011). Measurement of three-dimensional microstructure in a LiCoO2 positive electrode. J Power Sources 196(7), 34433447.Google Scholar
Wilson, J.R., Kobsiriphat, W., Mendoza, R., Chen, H.-Y., Hiller, J.M., Miller, D.J., Thornton, K., Voorhees, P.W., Adler, S.B. & Barnett, S.A. (2006). Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat Mater 11, 541544.Google Scholar
Wu, W. & Jiang, F. (2013). Simulated annealing reconstruction and characterization of the three-dimensional microstructure of a LiCoO2 lithium-ion battery cathode. Mater Characterization 80, 6268.Google Scholar
Yan, B., Lim, C., Yin, L. & Zhu, L. (2013). Simulation of heat generation in a reconstructed LiCoO2 cathode during galvanostatic discharge. Electrochimica Acta 100, 171179.Google Scholar
Zielke, L., Hutzenlaub, T., Wheeler, D.R., Chao, C.-W., Manke, I., Hilger, A., Paust, N., Zengerle, R. & Thiele, S. (2014 a). Three-phase multiscale modeling of a LiCoO2 cathode: Combining the advantages of FIB-SEM imaging and X-ray tomography. Adv Energy Mater 5, 1401612.Google Scholar
Zielke, L., Hutzenlaub, T., Wheeler, D.R., Manke, I., Arlt, T., Paust, N., Zengerle, R. & Thiele, S. (2014 b). A combination of X-ray tomography and carbon binder modeling: reconstructing the three phases of LiCoO2Li-ion battery cathodes. Adv Energy Mater 4(8), 1301617.Google Scholar
Supplementary material: File

Liu supplementary material S1

Liu supplementary material

Download Liu supplementary material S1(File)
File 1.4 MB