Skip to main content

Tomographic Heating Holder for In Situ TEM: Study of Pt/C and PtPd/Al2O3 Catalysts as a Function of Temperature

  • Lionel C. Gontard (a1), Rafal E. Dunin-Borkowski (a2), Asunción Fernández (a1), Dogan Ozkaya (a3) and Takeshi Kasama (a4)...

A tomographic heating holder for transmission electron microscopy that can be used to study supported catalysts at temperatures of up to ~1,500°C is described. The specimen is placed in direct thermal contact with a tungsten filament that is oriented perpendicular to the axis of the holder without using a support film, allowing tomographic image acquisition at high specimen tilt angles with minimum optical shadowing. We use the holder to illustrate the evolution of the active phases of Pt nanoparticles on carbon black and PtPd nanoparticles on γ-alumina with temperature. Particle size distributions and changes in active surface area are quantified from tilt series of images acquired after subjecting the specimens to increasing temperatures. The porosity of the alumina support and the sintering mechanisms of the catalysts are shown to depend on distance from the heating filament.

Corresponding author
* Corresponding author.
Hide All
Ahn T.M., Wynblatt P. & Tien J.K. (1981). Coarsening kinetics of platinum particles on oxide substrates. Acta Metall 29, 921929.
Ajayan P.M. & Marks L.D. (1988). Quasimelting and phases of small particles. Phys Rev Lett 60, 585587.
Barnard A.S., Young N.P., Kirkland A.I., Van Huis M.A. & Xu H. (2009). Nanogold: A quantitative phase map. ACS Nano 3(6), 14311436.
Benavidez A.D., Kovarik L., Genc A., Agrawal N., Larsson E.M., Hansen T.W., Karim A.M. & Datye A.K. (2010). Environmental transmission electron microscopy study of the origins of anomalous particle size distributions in supported metal catalysts. ACS Catal 2, 23492356.
Bett J.A., Kinoshita K. & Stonehart P. (1974). Crystallite growth of platinum dispersed on graphitized carbon black. J Catal 35, 307316.
Cavalca F., Laursen A.B., Kardynal B.E., Dunin-Borkowski R.E., Dahl S., Wagner J.B. & Hansen T.W. (2012). In-situ transmission electron microscopy of light-induced photocatalytic reactions. Nanotechnology 23, 075705.
Clark R.W., Tien J.K. & Wynblatt P. (1980). Loss of palladium from model platinum-palladium supported catalysts during annealing. J Catal 61, 1518.
Clark R.W., Wynblatt P. & Tien J.K. (1982). Coarsening kinetics of alloy platinum-palladium particles on oxide substrates. Acta Metall 30, 136146.
Coloma F., Sepúlveda-Escribano A. & Rodríguez-Reinoso F. (1995). Heat-treated carbon blacks as supports for platinum catalysts. J Catal 154, 299305.
Creemer J.F., Helveg S., Kooyman P.J., Molenbroek A.M., Zandbergen H.W. & Sarro P.M. (2010). A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J Microelectromech Syst 19, 254264.
Ercolesi F., Andreoni W. & Tosatti E. (1991). Melting of small gold particles: mechanisms and size effects. Phys Rev Lett 66(7), 911914.
Gontard L.C., Chang L.Y., Hetherington C.J.D., Kirkland A.I., Ozkaya D. & Dunin-Borkowski R.E. (2007). Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew Chem Int Ed 46, 36833685.
Gontard L.C., Dunin-Borkowski R.E. & Ozkaya D. (2008). Three-dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black. J Microsc 232, 248259.
Gontard L.C., Dunin-Borkowski R.E., Gass M.H., Bleloch A.L. & Ozkaya D. (2009). Three-dimensional shapes and structures of lamellar-twinned fcc nanoparticles using ADF STEM. J Electron Microsc 58, 167174.
Gontard L.C., Ozkaya D. & Dunin-Borkowski R.E. (2011). A simple algorithm for measuring particle size distributions on an uneven background from TEM images. Ultramicroscopy 111, 101106.
González J.C., Hernández J.C., López-Haro M., del Río E., Delgado J.J., Hungría A.B., Trasobares S., Bernal S., Midgley P.A. & Calvino J.J. (2009). 3D characterization of gold nanoparticles supported on heavy metal oxide catalysts by HAADF-STEM electron tomography. Angew Chem Int Ed 48, 53135315.
Guisbiers G., Abudukelimu G. & Hourlier D. (2011). Size-dependent catalytic and melting properties of platinum palladium nanoparticles. Nanoscale Res Lett 6, 15.
Hansen T.W., DeLaRiva A.T., Challa S.R. & Datye A.K. (2013). Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? ACC Chem Res 46(8), 17201730.
Hansen T.W., Wagner T.W., Hansen P.L., Dahl S., Topsoe H. & Jacobsen C.J.H. (2002). Atomic-resolution in-situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 15081509.
Harris P.J.F. (1986). The sintering of platinum particles in an alumina-supported catalyst: Further transmission electron microscopy studies. J Catal 97, 527542.
Harris P.J.F. (1995). Growth and structure of supported metal catalyst particles. Int Mater Rev 40(3), 97115.
Heidenreich R.D., Hess W.M. & Ban L.L. (1968). A test object and criteria for high resolution electron microscopy. J App Cryst 1, 119.
Horch S., Lorensen F., Helveg S., Lægsgaard E., Stensgaard I., Jacobsen K.W., Nørskov J.K. & Besenbacher F. (1999). Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen. Nature 398, 134136.
José-Yacamán M., Gutierrez-Wing C., Miki M., Yang D.-Q., Piyakis K.N. & Sacher E. (2005). Surface diffusion and coalescence of mobile metal nanoparticles. J Phys Chem B 109, 97039711.
Kamino T., Kuroda K. & Saka H. (1992). In situ HREM/microanalysis study of reduction of Al2O3 with palladium. Ultramicroscopy 41, 245248.
Kamino T., Yaguchi T., Konno M., Watabe A., Marukawa T., Mima T., Kuroda K., Saka H., Arai S., Makino H., Suzuki Y. & Kishita K. (2005). Development of a gas injection/specimen heating holder for use with transmission electron microscope. J Electron Microsc 54(6), 497503.
Kamino T., Yaguchi T., Sato T. & Hashimoto T. (2005). Development of a technique for high resolution electron microscopic observation of nano-materials at elevated temperatures. J Electron Microsc 54(6), 505508.
Linderoth T.R., Horch S., Lægsgaard E., Stensgaard I. & Besenbacher F. (1997). Surface diffusion of Pt on Pt(110): Arrhenius behavior of long jumps. Phys Rev Lett 78(26), 49784981.
Mehraeen S., McKeown J.T., Deshmukh P.V., Evans J.E., Abellan P., Xu P., Reed B.W., Taheri M.L., Fischione P.E. & Browning N.D. (2013). A (S)TEM gas cell holder with localized laser heating for in-situ experiments. Microsc Microanal 19, 470478.
Mishra Y.K., Mohapatra S., Avasthi D.K., Lalla N.P. & Gupta A. (2010). Tailoring the size of gold nanoparticles by electron beam inside transmission electron microscope. Adv Mat Lett 1(2), 151155.
Ozkaya D., Thompsett D., Goodlet G., Spratt S., Ash P. & Boyd D. (2003). Characterisation of C supported Pt nano-particles using HREM. Inst Phys Conf Ser 179, 127.
Peng Z., Somodi F., Helveg S., Kisielowski C., Specht P. & Bell A.T. (2012). High-resolution in-situ and ex situ TEM studies on graphene formation and growth on Pt nanoparticles. J Catal 286, 2229.
Ralph B.T.R. & Hogarth M.P. (2002). Catalysis for low-temperature fuel cells. Part I: The cathode challenges. Plat Met Rev 46, 314.
Ruckenstein E. & Lee S.H. (1984). Redispersion and migration of Ni supported on alumina. J Catal 86, 457.
Sankaranarayanan S.K.R.S., Bhethanabotla V.R. & Joseph B. (2005). Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters. Phys Rev B 71, 195415.
Sepúlveda-Escribano A., Coloma F. & Rodíguez-Reinoso F. (1998). Platinum catalysts supported on carbon blacks with different surface chemical properties. Appl Catal A 173, 247257.
Simonsen S.B., Chorkendorff I., Dahl S., Skoglundh M., Sehested J. & Helveg S. (2010). Direct observations of oxygen-induced platinum nanoparticle ripening studied by in-situ tem. J Am Chem Soc 132, 79687975.
Tauster S.J. (1987). Strong metal-support interactions. J Am Chem Soc 4, 170175.
Wynblatt P. (1976). Particle growth in model supported metal catalysts-II. Comparison of experiment with theory. Acta Mettal 24, 11751182.
Wynblatt P. & Gjostein N.A. (1976). Particle growth in model supported metal catalysts-I. Theory. Acta Mettal 24, 11651174.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 2
Total number of PDF views: 35 *
Loading metrics...

Abstract views

Total abstract views: 152 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th November 2017. This data will be updated every 24 hours.