Skip to main content Accessibility help
×
Home

Toward 10 meV Electron Energy-Loss Spectroscopy Resolution for Plasmonics

  • Edson P. Bellido (a1), David Rossouw (a1) and Gianluigi A. Botton (a1)

Abstract

Energy resolution is one of the most important parameters in electron energy-loss spectroscopy. This is especially true for measurement of surface plasmon resonances, where high-energy resolution is crucial for resolving individual resonance peaks, in particular close to the zero-loss peak. In this work, we improve the energy resolution of electron energy-loss spectra of surface plasmon resonances, acquired with a monochromated beam in a scanning transmission electron microscope, by the use of the Richardson–Lucy deconvolution algorithm. We test the performance of the algorithm in a simulated spectrum and then apply it to experimental energy-loss spectra of a lithographically patterned silver nanorod. By reduction of the point spread function of the spectrum, we are able to identify low-energy surface plasmon peaks in spectra, more localized features, and higher contrast in surface plasmon energy-filtered maps. Thanks to the combination of a monochromated beam and the Richardson–Lucy algorithm, we improve the effective resolution down to 30 meV, and evidence of success up to 10 meV resolution for losses below 1 eV. We also propose, implement, and test two methods to limit the number of iterations in the algorithm. The first method is based on noise measurement and analysis, while in the second we monitor the change of slope in the deconvolved spectrum.

Copyright

Corresponding author

* Corresponding author. gbotton@mcmaster.ca

References

Hide All
Aguiar, J.A., Reed, B.W., Ramasse, Q.M., Erni, R. & Browning, N.D. (2013). Quantifying the low-energy limit and spectral resolution in valence electron energy loss spectroscopy. Ultramicroscopy 124, 130138.
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-Ångstrom resolution using aberration corrected electron optics. Nature 418(6898), 617620.
Bosman, M., Ye, E., Tan, S.F., Nijhuis, C.A., Yang, J.K.W., Marty, R., Mlayah, A., Arbouet, A., Girards, C. & Han, M.Y. (2013). Surface plasmon damping quantified with an electron nanoprobe. Sci Rep 3, 1312.
Duan, H., Fernández-Domínguez, A.I., Bosman, M., Maier, S.A. & Yang, J.K.W. (2012). Nanoplasmonics: Classical down to the nanometer scale. Nano Lett 12(3), 16831689.
Eccles, J.W.L., Bangert, U., Bromfield, M., Christian, P., Harvey, A.J. & Thomas, P. (2010). UV-vis plasmon studies of metal nanoparticles. J Phys Conf Ser 241, 012090.
Egerton, R.F. (2003). New techniques in electron energy-loss spectroscopy and energy-filtered imaging. Micron 34(3–5), 127139.
Egerton, R.F. (2007). Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107(8), 575586.
Egerton, R.F., Qian, H. & Malac, M. (2006). Improving the energy resolution of X-ray and electron energy-loss spectra. Micron 37(4), 310315.
García de Abajo, F.J. (2010). Optical excitations in electron microscopy. Rev Mod Phys 82(1), 209275.
Gloter, A., Douiri, A., Tencé, M. & Colliex, C. (2003). Improving energy resolution of EELS spectra: An alternative to the monochromator solution. Ultramicroscopy 96(3–4), 385400.
Hohenester, U. & Trügler, A. (2012). MNPBEM a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput Physics Commun 183(2), 370381.
Ishizuka, K., Kimoto, K. & Bando, Y. (2003). Improving energy resolution of EELS spectra by deconvolution using maximum-entropy and Richardson-Lucy algorithms. Microsc Microanal 2(9), 832833.
Kimoto, K., Ishizuka, K., Mizoguchi, T., Tanaka, I. & Matsui, Y. (2003). The study of Al-L 23 ELNES with resolution-enhancement software and first-principles calculation. J Electron Microsc 52(3), 299303.
Koh, A.L., McComb, D.W., Maier, S.A., Low, H.Y. & Yang, J.K.W. (2010). Sub-10 nm patterning of gold nanostructures on silicon-nitride membranes for plasmon mapping with electron energy-loss spectroscopy. J Vacuum Sci Technol 28(6), C6O45C6O49.
Krivanek, L. & Kundmann, M.K. (1995). Spatial resolution in EFTEM elemental maps. J Microsc 180, 277287.
Krivanek, O., Dellby, N. & Lupini, A.R. (1999). Towards sub-Å electron beams. Ultramicroscopy 78(1–4), 111.
Krivanek, O.L., Lovejoy, T.C., Dellby, N. & Carpenter, R.W. (2013). Monochromated STEM with a 30 meV-wide, atom-sized electron probe. Microscopy 62(1), 321.
Kuzuo, R. & Tanaka, M. (1993). Resolution enhancement of electron energy-loss spectra using the maximum entropy method. J Electron Microsc 243, 240243.
Lazar, S., Botton, G.A. & Zandbergen, H.W. (2006). Enhancement of resolution in core-loss and low-loss spectroscopy in a monochromated microscope. Ultramicroscopy 106(11–12), 10911103.
Lucy, L.H. (1974). An iterative technique for the rectification of observed distributions. Astronomical J 79(6), 745754.
Maier, S.A., Brongersma, M.L. & Atwater, H.A. (2001). Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices. Appl Phys Lett 78(1), 16.
Nelayah, J., Kociak, M., Stéphan, O., García de Abajo, F.J., Tencé, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Marzán, L.M. & Colliex, C. (2007). Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3(5), 348353.
Overwijk, M. & Reefman, D. (2000). Maximum-entropy deconvolution applied to electron energy-loss spectroscopy. Micron 31(4), 325331.
Palik, E. (1985). Handbook of Optical Constants of Solids . Academic Press, Inc., New York.
Prasad, S. (2002). Statistical-information-based performance criteria for Richardson-Lucy image deblurring. J Opt Soc Am A Opt Image Sci Vis 19(7), 12861296.
Richarson, W.H. (1972). Bayesian-based iterative method of image restoration. J Opt Soc Am 62(1), 5559.
Rossouw, D. & Botton, G.A. (2013). Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding. Phys Rev Lett 110(6), 066801.
Shepp, L.A. & Vardi, Y. (1982). Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1(2), 113122.
Snyder, D.L., Hammoud, A.M. & White, R.L. (1993). Image recovery from data acquired with a charge-coupled-device camera. J Opt Soc Am 10(5), 10141023.
van Kempen, G.M.P., van Vliet, L.J., Verveer, P.J. & van der Voort, H.T.M. (1997). A quantitative comparison of image restoration methods for confocal microscopy. J Microsc 185, 354365.
Wang, F., Egerton, R. & Malac, M. (2009). Fourier-ratio deconvolution techniques for electron energy-loss spectroscopy (EELS). Ultramicroscopy 109(10), 12451249.
Zuo, J.M. (2000). Electron detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration. Microsc Res Tech 49(3), 245268.

Keywords

Type Description Title
PDF
Supplementary materials

Bellido Supplementary Material
Supplementary Material

 PDF (9.6 MB)
9.6 MB

Toward 10 meV Electron Energy-Loss Spectroscopy Resolution for Plasmonics

  • Edson P. Bellido (a1), David Rossouw (a1) and Gianluigi A. Botton (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed