Skip to main content

Two-Photon Imaging of Microbial Immunity in Living Tissues

  • Jasmin Herz (a1), Bernd H. Zinselmeyer (a1) and Dorian B. McGavern (a1)

The immune system is highly evolved and can respond to infection throughout the body. Pathogen-specific immune cells are usually generated in secondary lymphoid tissues (e.g., spleen, lymph nodes) and then migrate to sites of infection where their functionality is shaped by the local milieu. Because immune cells are so heavily influenced by the infected tissue in which they reside, it is important that their interactions and dynamics be studied in vivo. Two-photon microscopy is a powerful approach to study host-immune interactions in living tissues, and recent technical advances in the field have enabled researchers to capture movies of immune cells and infectious agents operating in real time. These studies have shed light on pathogen entry and spread through intact tissues as well as the mechanisms by which innate and adaptive immune cells participate in thwarting infections. This review focuses on how two-photon microscopy can be used to study tissue-specific immune responses in vivo, and how this approach has advanced our understanding of host-immune interactions following infection.

Corresponding author
Corresponding author. E-mail:
Hide All
Abdulreda M.H., Faleo G., Molano R.D., Lopez-Cabezas M., Molina J., Tan Y., Echeverria O.A., Zahr-Akrawi E., Rodriguez-Diaz R., Edlund P.K., Leibiger I., Bayer A.L., Perez V., Ricordi C., Caicedo A., Pileggi A. & Berggren P.O. (2011). High-resolution, noninvasive longitudinal live imaging of immune responses. Proc Natl Acad Sci USA 108(31), 1286312868.
Ai H.W., Henderson J.N., Remington S.J. & Campbell R.E. (2006). Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: Structural characterization and applications in fluorescence imaging. Biochem J 400(3), 531540.
Albota M.A., Xu C. & Webb W.W. (1998). Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl Opt 37(31), 73527356.
Anandasabapathy N., Victora G.D., Meredith M., Feder R., Dong B., Kluger C., Yao K., Dustin M.L., Nussenzweig M.C., Steinman R.M. & Liu K. (2011). Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J Exp Med 208(8), 16951705.
Aoshi T., Zinselmeyer B.H., Konjufca V., Lynch J.N., Zhang X., Koide Y. & Miller M.J. (2008). Bacterial entry to the splenic white pulp initiates antigen presentation to CD8+ T cells. Immunity 29(3), 476486.
Barretto R.P., Ko T.H., Jung J.C., Wang T.J., Capps G., Waters A.C., Ziv Y., Attardo A., Recht L. & Schnitzer M.J. (2011). Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat Med 17(2), 223228.
Bartholomaus I., Kawakami N., Odoardi F., Schlager C., Miljkovic D., Ellwart J.W., Klinkert W.E., Flugel-Koch C., Issekutz T.B., Wekerle H. & Flugel A. (2009). Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462(7269), 9498.
Beattie L., Peltan A., Maroof A., Kirby A., Brown N., Coles M., Smith D.F. & Kaye P.M. (2010). Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells. PLoS Pathog 6(3), e1000805.
Bousso P., Bhakta N.R., Lewis R.S. & Robey E. (2002). Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296(5574), 18761880.
Bousso P. & Robey E. (2003). Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 4(6), 579585.
Brockhaus J., Moller T. & Kettenmann H. (1996). Phagocytozing ameboid microglial cells studied in a mouse corpus callosum slice preparation. Glia 16(1), 8190.
Bullen A., Friedman R.S. & Krummel M.F. (2009). Two-photon imaging of the immune system: A custom technology platform for high-speed, multicolor tissue imaging of immune responses. Curr Top Microbiol Immunol 334, 129.
Bulloch K., Miller M.M., Gal-Toth J., Milner T.A., Gottfried-Blackmore A., Waters E.M., Kaunzner U.W., Liu K., Lindquist R., Nussenzweig M.C., Steinman R.M. & McEwen B.S. (2008). CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J Comp Neurol 508(5), 687710.
Cavanagh L.L., Bonasio R., Mazo I.B., Halin C., Cheng G., van der Velden A.W., Cariappa A., Chase C., Russell P., Starnbach M.N., Koni P.A., Pillai S., Weninger W. & von Andrian U.H. (2005). Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nat Immunol 6(10), 10291037.
Chieppa M., Rescigno M., Huang A.Y. & Germain R.N. (2006). Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203(13), 28412852.
Chtanova T., Schaeffer M., Han S.J., van Dooren G.G., Nollmann M., Herzmark P., Chan S.W., Satija H., Camfield K., Aaron H., Striepen B. & Robey E.A. (2008). Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29(3), 487496.
Coombes J.L. & Robey E.A. (2010). Dynamic imaging of host-pathogen interactions in vivo . Nat Rev Immunol 10(5), 353364.
Denk W., Strickler J.H. & Webb W.W. (1990). Two-photon laser scanning fluorescence microscopy. Science 248(4951), 7376.
Drobizhev M., Makarov N.S., Tillo S.E., Hughes T.E. & Rebane A. (2011). Two-photon absorption properties of fluorescent proteins. Nat Methods 8(5), 393399.
Egen J.G., Rothfuchs A.G., Feng C.G., Horwitz M.A., Sher A. & Germain R.N. (2011). Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34(5), 807819.
Egen J.G., Rothfuchs A.G., Feng C.G., Winter N., Sher A. & Germain R.N. (2008). Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28(2), 271284.
Emonet S.E., Urata S. & de la Torre J.C. (2011). Arenavirus reverse genetics: New approaches for the investigation of arenavirus biology and development of antiviral strategies. Virology 411(2), 416425.
Emonet S.F., Garidou L., McGavern D.B. & de la Torre J.C. (2009). Generation of recombinant lymphocytic choriomeningitis viruses with trisegmented genomes stably expressing two additional genes of interest. Proc Natl Acad Sci USA 106(9), 34733478.
Franken P., Hill A., Peters C. & Weinreich G. (1961). Generation of optical harmonics. Phys Rev Lett 7, 118119.
Gebhardt T., Whitney P.G., Zaid A., Mackay L.K., Brooks A.G., Heath W.R., Carbone F.R. & Mueller S.N. (2011). Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477(7363), 216219.
Goeppert-Mayer M. (1931). Über Elementarakte mit zwei Quantensprüngen. Ann Phys 9(3), 273295.
Heim R., Cubitt A.B. & Tsien R.Y. (1995). Improved green fluorescence. Nature 373(6516), 663664.
Hickman H.D., Bennink J.R. & Yewdell J.W. (2009). Caught in the act: Intravital multiphoton microscopy of host-pathogen interactions. Cell Host Microbe 5(1), 1321.
Hickman H.D., Li L., Reynoso G.V., Rubin E.J., Skon C.N., Mays J.W., Gibbs J., Schwartz O., Bennink J.R. & Yewdell J.W. (2011). Chemokines control naive CD8+ T cell selection of optimal lymph node antigen presenting cells. J Exp Med 208(12), 25112524.
Hickman H.D., Takeda K., Skon C.N., Murray F.R., Hensley S.E., Loomis J., Barber G.N., Bennink J.R. & Yewdell J.W. (2008). Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nat Immunol 9(2), 155165.
Iannacone M., Moseman E.A., Tonti E., Bosurgi L., Junt T., Henrickson S.E., Whelan S.P., Guidotti L.G. & von Andrian U.H. (2010). Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 465(7301), 10791083.
Jung S., Aliberti J., Graemmel P., Sunshine M.J., Kreutzberg G.W., Sher A. & Littman D.R. (2000). Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11), 41064114.
Junt T., Moseman E.A., Iannacone M., Massberg S., Lang P.A., Boes M., Fink K., Henrickson S.E., Shayakhmetov D.M., Di Paolo N.C., van Rooijen N., Mempel T.R., Whelan S.P. & von Andrian U.H. (2007). Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450(7166), 110114.
Kaiser W. & Garrett C.G.B. (1961). Two-photon excitation in CaF2:Eu2+. Phys Rev Lett 9, 453.
Kang S.S., Herz J., Kim J.V., Nayak D., Stewart-Hutchinson P., Dustin M.L. & McGavern D.B. (2011). Migration of cytotoxic lymphocytes in cell cycle permits local MHC I-dependent control of division at sites of viral infection. J Exp Med 208(4), 747759.
Kang S.S. & McGavern D.B. (2008). Lymphocytic choriomeningitis infection of the central nervous system. Front Biosci 13, 45294543.
Kang S.S. & McGavern D.B. (2010). Microbial induction of vascular pathology in the CNS. J Neuroimmune Pharmacol 5(3), 370386.
Kim J.V., Kang S.S., Dustin M.L. & McGavern D.B. (2009). Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457(7226), 191195.
Kobat D., Horton N.G. & Xu C. (2011). In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J Biomed Opt 16(10), 106014.
Kreisel D., Nava R.G., Li W., Zinselmeyer B.H., Wang B., Lai J., Pless R., Gelman A.E., Krupnick A.S. & Miller M.J. (2010). In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc Natl Acad Sci USA 107(42), 1807318078.
Lin A., Loughman J.A., Zinselmeyer B.H., Miller M.J. & Caparon M.G. (2009). Streptolysin S inhibits neutrophil recruitment during the early stages of Streptococcus pyogenes infection. Infect Immun 77(11), 51905201.
Lindquist R.L., Shakhar G., Dudziak D., Wardemann H., Eisenreich T., Dustin M.L. & Nussenzweig M.C. (2004). Visualizing dendritic cell networks in vivo . Nat Immunol 5(12), 12431250.
Looney M.R., Thornton E.E., Sen D., Lamm W.J., Glenny R.W. & Krummel M.F. (2011). Stabilized imaging of immune surveillance in the mouse lung. Nat Methods 8(1), 9196.
Mainen Z.F., Maletic-Savatic M., Shi S.H., Hayashi Y., Malinow R. & Svoboda K. (1999). Two-photon imaging in living brain slices. Methods 18(2), 231239.
Makarov N.S., Drobizhev M. & Rebane A. (2008). Two-photon absorption standards in the 550–1600 nm excitation wavelength range. Opt Express 16(6), 40294047.
Mansson L.E., Melican K., Boekel J., Sandoval R.M., Hautefort I., Tanner G.A., Molitoris B.A. & Richter-Dahlfors A. (2007). Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals. Cell Microbiol 9(2), 413424.
Matheu M.P., Beeton C., Parker I., Chandy K.G. & Cahalan M.D. (2008). Imaging effector memory T cells in the ear after induction of adoptive DTH. J Vis Exp 18, e907.
Matz M.V., Fradkov A.F., Labas Y.A., Savitsky A.P., Zaraisky A.G., Markelov M.L. & Lukyanov S.A. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17(10), 969973.
McGavern D.B. & Kang S.S. (2011). Illuminating viral infections in the nervous system. Nat Rev Immunol 11(5), 318329.
Mempel T.R., Henrickson S.E. & Von Andrian U.H. (2004). T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427(6970), 154159.
Miller M.J., Safrina O., Parker I. & Cahalan M.D. (2004). Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J Exp Med 200(7), 847856.
Miller M.J., Wei S.H., Cahalan M.D. & Parker I. (2003). Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc Natl Acad Sci USA 100(5), 26042609.
Miller M.J., Wei S.H., Parker I. & Cahalan M.D. (2002). Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574), 18691873.
Mojzisova H. & Vermot J. (2011). When multiphoton microscopy sees near infrared. Curr Opin Genet Dev 21(5), 549557.
Moulton P.F. (1986). Spectroscopic and laser characteristics of Ti:Al2O3 . J Opt Soc Am B 3, 125133.
Oxenius A., Bachmann M.F., Zinkernagel R.M. & Hengartner H. (1998). Virus-specific MHC-class II-restricted TCR-transgenic mice: Effects on humoral and cellular immune responses after viral infection. Eur J Immunol 28(1), 390400.
Peters N.C., Egen J.G., Secundino N., Debrabant A., Kimblin N., Kamhawi S., Lawyer P., Fay M.P., Germain R.N. & Sacks D. (2008). In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321(5891), 970974.
Pircher H., Burki K., Lang R., Hengartner H. & Zinkernagel R.M. (1989). Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342(6249), 559561.
Prasher D.C., Eckenrode V.K., Ward W.W., Prendergast F.G. & Cormier M.J. (1992). Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2), 229233.
Schaeffer M., Han S.J., Chtanova T., van Dooren G.G., Herzmark P., Chen Y., Roysam B., Striepen B. & Robey E.A. (2009). Dynamic imaging of T cell-parasite interactions in the brains of mice chronically infected with Toxoplasma gondii . J Immunol 182(10), 63796393.
Shakhar G., Lindquist R.L., Skokos D., Dudziak D., Huang J.H., Nussenzweig M.C. & Dustin M.L. (2005). Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo . Nat Immunol 6(7), 707714.
Shaner N.C., Campbell R.E., Steinbach P.A., Giepmans B.N., Palmer A.E. & Tsien R.Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12), 15671572.
Shaner N.C., Steinbach P.A. & Tsien R.Y. (2005). A guide to choosing fluorescent proteins. Nat Methods 2(12), 905909.
Shapiro E.M., Sharer K., Skrtic S. & Koretsky A.P. (2006). In vivo detection of single cells by MRI. Magn Reson Med 55(2), 242249.
Shimomura O., Johnson F.H. & Saiga Y. (1962). Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59, 223239.
Vilela M.C., Mansur D.S., Lacerda-Queiroz N., Rodrigues D.H., Arantes R.M., Kroon E.G., Campos M.A., Teixeira M.M. & Teixeira A.L. (2008). Traffic of leukocytes in the central nervous system is associated with chemokine up-regulation in a severe model of herpes simplex encephalitis: An intravital microscopy study. Neurosci Lett 445(1), 1822.
Waite J.C., Leiner I., Lauer P., Rae C.S., Barbet G., Zheng H., Portnoy D.A., Pamer E.G. & Dustin M.L. (2011). Dynamic imaging of the effector immune response to listeria infection in vivo . PLoS Pathog 7(3), e1001326.
Wei S.H., Safrina O., Yu Y., Garrod K.R., Cahalan M.D. & Parker I. (2007). Ca2+ signals in CD4+ T cells during early contacts with antigen-bearing dendritic cells in lymph node. J Immunol 179(3), 15861594.
Wilson E.H., Harris T.H., Mrass P., John B., Tait E.D., Wu G.F., Pepper M., Wherry E.J., Dzierzinski F., Roos D., Haydon P.G., Laufer T.M., Weninger W. & Hunter C.A. (2009). Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 30(2), 300311.
Xu H.T., Pan F., Yang G. & Gan W.B. (2007). Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10(5), 549551.
Yang G., Pan F., Parkhurst C.N., Grutzendler J. & Gan W.B. (2010). Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 5(2), 201208.
Zabow G., Dodd S., Moreland J. & Koretsky A. (2008). Micro-engineered local field control for high-sensitivity multispectral MRI. Nature 453(7198), 10581063.
Zinselmeyer B.H., Dempster J., Gurney A.M., Wokosin D., Miller M., Ho H., Millington O.R., Smith K.M., Rush C.M., Parker I., Cahalan M., Brewer J.M. & Garside P. (2005). In situ characterization of CD4+ T cell behavior in mucosal and systemic lymphoid tissues during the induction of oral priming and tolerance. J Exp Med 201(11), 18151823.
Zinselmeyer B.H., Dempster J., Wokosin D.L., Cannon J.J., Pless R., Parker I. & Miller M.J. (2009). Chapter 16. Two-photon microscopy and multidimensional analysis of cell dynamics. Methods Enzymol 461, 349378.
Zinselmeyer B.H., Lynch J.N., Zhang X., Aoshi T. & Miller M.J. (2008). Video-rate two-photon imaging of mouse footpad—A promising model for studying leukocyte recruitment dynamics during inflammation. Inflamm Res 57(3), 9396.
Zipfel W.R., Williams R.M., Christie R., Nikitin A.Y., Hyman B.T. & Webb W.W. (2003). Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100(12), 70757080.
Zoumi A., Yeh A. & Tromberg B.J. (2002). Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99(17), 1101411019.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Herz Supplementary Movie 3
Supplementary Movie 3. Dynamics of CNS myeloid cells following LCMV infection. Representative time lapses of 3D reconstructions show the dynamics of monocytes, macrophages, and microglia (green) in the brains of uninfected (left) and LCMV-DsRed (right) infected CX3CR1-GFP+/- mice. LCMV infection (right panel, red) increases monocytic surveillance of blood vessels and induces the generation of highly reactive microglia/macrophages. Note the aggregation of myeloid cells in areas of viral infection (white arrow). Blood vessels (red) in the left panel are shown in red. Skull bone in both panels is blue.

 Video (36.4 MB)
36.4 MB
Supplementary Materials

Herz Supplementary Movie 1
Supplementary Movie 1. Dynamics of antiviral CD8 and CD4 T cells. A representative time lapse of a three-dimensional (3D) reconstruction shows CFP+ LCMV-specific CD8 T cells (green) and GFP+ LCMV-specific CD4 T cells in the splenic red (RP) and white (WP) pulp 7 days following an i.v. infection with LCMV. Z-stacks (50 mm in depth) were collected every 30 s. Collagen is shown in pink and autofluorescence in blue. The white hashed line denotes the border between the splenic RP and WP.

 Video (17.0 MB)
17.0 MB
Supplementary Materials

Herz Supplementary Movie 2
Supplementary Movie 2. Anatomy of brain myeloid cells in naïve versus LCMV-infected mice. A side-by-side comparison of brain macrophages and microglia (green) is shown for mock infected CX3CR1-GFP+/- mice (left) versus mice infected intracerebrally with LCMV (right). Each z-stack is 100 um in depth and was collected with a 2.5-um step interval. Skull bone is shown in blue.

 Video (3.5 MB)
3.5 MB


Full text views

Total number of HTML views: 14
Total number of PDF views: 23 *
Loading metrics...

Abstract views

Total abstract views: 474 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.