Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 21
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    McCulloch, Andrew J Sparkes, Ben M and Scholten, Robert E 2016. Cold electron sources using laser-cooled atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 49, Issue. 16, p. 164004.

    Egerton, Ray F 2015. Outrun radiation damage with electrons?. Advanced Structural and Chemical Imaging, Vol. 1, Issue. 1,

    Kasmi, L Kreier, D Bradler, M Riedle, E and Baum, P 2015. Femtosecond single-electron pulses generated by two-photon photoemission close to the work function. New Journal of Physics, Vol. 17, Issue. 3, p. 033008.

    Plemmons, Dayne A. Suri, Pranav K. and Flannigan, David J. 2015. Probing Structural and Electronic Dynamics with Ultrafast Electron Microscopy. Chemistry of Materials, Vol. 27, Issue. 9, p. 3178.

    Qi, Yingpeng Pei, Minjie Qi, Dalong Yang, Yan Jia, Tianqing Zhang, Shian and Sun, Zhenrong 2015. Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique. The Journal of Physical Chemistry Letters, Vol. 6, Issue. 19, p. 3867.

    Baum, Peter 2014. Towards ultimate temporal and spatial resolutions with ultrafast single-electron diffraction. Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 47, Issue. 12, p. 124005.

    Engelen, W.J. Smakman, E.P. Bakker, D.J. Luiten, O.J. and Vredenbregt, E.J.D. 2014. Effective temperature of an ultracold electron source based on near-threshold photoionization. Ultramicroscopy, Vol. 136, p. 73.

    Geer, S B van der Vredenbregt, E J D Luiten, O J and Loos, M J de 2014. An ultracold electron source as an injector for a compact SASE-FEL. Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 47, Issue. 23, p. 234009.

    Kreier, Daniel Sabonis, Deividas and Baum, Peter 2014. Alignment of magnetic solenoid lenses for minimizing temporal distortions. Journal of Optics, Vol. 16, Issue. 7, p. 075201.

    Plemmons, Dayne A. Tae Park, Sang Zewail, Ahmed H. and Flannigan, David J. 2014. Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy. Ultramicroscopy, Vol. 146, p. 97.

    van Mourik, M. W. Engelen, W. J. Vredenbregt, E. J. D. and Luiten, O. J. 2014. Ultrafast electron diffraction using an ultracold source. Structural Dynamics, Vol. 1, Issue. 3, p. 034302.

    Xia, G Harvey, M Murray, A J Bellan, L Bertsche, W Appleby, R B Mete, O and Chattopadhyay, S 2014. An ultracold low emittance electron source. Journal of Instrumentation, Vol. 9, Issue. 06, p. P06011.

    Baum, Peter 2013. On the physics of ultrashort single-electron pulses for time-resolved microscopy and diffraction. Chemical Physics, Vol. 423, p. 55.

    Engelen, W. J. van der Heijden, M. A. Bakker, D. J. Vredenbregt, E. J. D. and Luiten, O. J. 2013. High-coherence electron bunches produced by femtosecond photoionization. Nature Communications, Vol. 4, p. 1693.

    Kime, L. Fioretti, A. Bruneau, Y. Porfido, N. Fuso, F. Viteau, M. Khalili, G. Šantić, N. Gloter, A. Rasser, B. Sudraud, P. Pillet, P. and Comparat, D. 2013. High-flux monochromatic ion and electron beams based on laser-cooled atoms. Physical Review A, Vol. 88, Issue. 3,

    Kirchner, F O Lahme, S Krausz, F and Baum, P 2013. Coherence of femtosecond single electrons exceeds biomolecular dimensions. New Journal of Physics, Vol. 15, Issue. 6, p. 063021.

    Carbone, F. Musumeci, P. Luiten, O.J. and Hebert, C. 2012. A perspective on novel sources of ultrashort electron and X-ray pulses. Chemical Physics, Vol. 392, Issue. 1, p. 1.

    Saliba, Sebastian D. Putkunz, Corey T. Sheludko, David V. McCulloch, Andrew J. Nugent, Keith A. and Scholten, Robert E. 2012. Spatial coherence of electron bunches extracted from an arbitrarily shaped cold atom electron source. Optics Express, Vol. 20, Issue. 4, p. 3967.

    Carbone, F. 2011. Modern electron microscopy resolved in space, energy and time. The European Physical Journal Applied Physics, Vol. 54, Issue. 3, p. 33503.

    McCulloch, A. J. Sheludko, D. V. Saliba, S. D. Bell, S. C. Junker, M. Nugent, K. A. and Scholten, R. E. 2011. Arbitrarily shaped high-coherence electron bunches from cold atoms. Nature Physics, Vol. 7, Issue. 10, p. 785.


Ultracold Electron Source for Single-Shot, Ultrafast Electron Diffraction

  • S.B. van der Geer (a1), M.J. de Loos (a1), E.J.D. Vredenbregt (a1) and O.J. Luiten (a1)
  • DOI:
  • Published online: 01 July 2009

Ultrafast electron diffraction (UED) enables studies of structural dynamics at atomic length and timescales, i.e., 0.1 nm and 0.1 ps, in single-shot mode. At present UED experiments are based on femtosecond laser photoemission from solid state cathodes. These photoemission sources perform excellently, but are not sufficiently bright for single-shot studies of, for example, biomolecular samples. We propose a new type of electron source, based on near-threshold photoionization of a laser-cooled and trapped atomic gas. The electron temperature of these sources can be as low as 10 K, implying an increase in brightness by orders of magnitude. We investigate a setup consisting of an ultracold electron source and standard radio-frequency acceleration techniques by GPT tracking simulations. The simulations use realistic fields and include all pairwise Coulomb interactions. We show that in this setup 120 keV, 0.1 pC electron bunches can be produced with a longitudinal emittance sufficiently small for enabling sub-100 fs bunch lengths at 1% relative energy spread. A transverse root-mean-square normalized emittance of εx = 10 nm is obtained, significantly better than from photoemission sources. Correlations in transverse phase-space indicate that the transverse emittance can be improved even further, enabling single-shot studies of biomolecular samples.

Corresponding author
Corresponding author. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. Barnes & P. Hut (1986). A hierarchical O(N log N) force-calculation algorithm. Nature 324, 446449.

B.E. Carlsten (1989). New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator. Nucl Instrum Methods Phys Res A 285, 313319.

Y.C. Chen , C.E. Simien , S. Laha , P. Gupta , Y.N. Martinez , P.G. Mickelson , S.B. Nagel & T.C. Killian (2004). Electron screening and kinetic-energy oscillations in a strongly coupled plasma. Phys Rev Lett 93, 265003.

B.J. Claessens , M.P. Reijnders , G. Taban , O.J. Luiten & E.J.D. Vredenbregt (2007). Cold electron and ion beams generated from trapped atoms. Phys Plasmas 14, 093101.

B.J. Claessens , S.B. van der Geer , G. Taban , E.J.D. Vredenbregt & O.J. Luiten (2005). Ultracold electron source. Phys Rev Lett 95, 164801.

R. Dwyer , C.T. Hebeisen , R. Ernstorfer , M. Harb , V.B. Deyirmenjian , R.E. Jordan & R.J.D. Miller (2006). Femtosecond electron diffraction: “Making the molecular movie.” Phil Trans R Soc 364, 741778.

J.B. Hastings , F.M. Rudakov , D.H. Dowell , J.F. Schmerge , J.D. Cardoza , J.M. Castro , S.M. Gierman , H. Loos & P.M. Weber (2006). Appl Phys Lett 89, 184109.

F.B. Kiewiet , A.H. Kemper , O.J. Luiten , G.J.H. Brussaard & M.J. van der Wiel (2002). Femtosecond synchronization of a 3 GHz rf oscillator to a mode-locked Ti:Sapphire laser. Nucl Instrum Methods Phys Res A 484, 619624.

T.C. Killian , S. Kulin , S.D. Bergeson , L.A. Orozco , C. Orzel & S.L. Rolston (1999). Creation of an ultracold neutral plasma. Phys Rev Lett 83, 47764779. [For reviews, see Gallagher, T.F. et al. (2003). Back and forth between Rydberg atoms and ultracold plasmas. J Opt Soc Am B20, 1091–1097; Killian, T.C. (2007). Ultracold neutral plasmas. Science 316, 705–708.]

S.G. Kuzmin & T.M. O'Neil (2002). Numerical simulation of ultracold plasmas: How rapid intrinsic heating limits the development of correlation. Phys Rev Lett 88, 065003.

H. Metcalf & P. van der Straten (1999). Laser Cooling and Trapping. New York: Springer.

P. Musumeci , J.T. Moody & C.M. Scoby (2008). Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory. Ultramicroscopy 108, 14501453.

L. Serafini & J.B. Rosenzweig (1997). Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors:mA theory of emittance compensation. Phys Rev E 55, 75657590.

B.J. Siwick , J.R. Dwyer , R.E. Jordan & R.J.D. Miller (2003). An atomic-level view of melting using femtosecond electron diffraction. Science 302, 13821385.

R. Srinivasan , V.A. Lobastov , C.-Y. Ruan & A.H. Zewail (2003). Ultrafast electron diffraction (UED) a new development for the 4D determination of transient molecular structures. Helv Chim Act 86, 17631838.

T. van Oudheusden , E.F. de Jong , S.B. van der Geer , W.P.E.M. Op 't Root , O.J. Luiten & B.J. Siwick (2007). Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. J Appl Phys 102, 093501.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *