Skip to main content

Visualization of the Coalescence of Bismuth Nanoparticles

  • Kai-Yang Niu (a1), Hong-Gang Liao (a1) and Haimei Zheng (a1) (a2)

Coalescence is a significant pathway for the growth of nanostructures. Here we studied the coalescence of Bi nanoparticles in situ by liquid cell transmission electron microscopy (TEM). The growth of Bi nanoparticles was initiated from a bismuth neodecanoate precursor solution by electron beam irradiation inside a liquid cell under the TEM. A significant number of coalescence events occurred from the as-grown Bi nanodots. Both symmetric coalescence of two equal-sized nanoparticles and asymmetric coalescence of two or more unequal-sized nanoparticles were analyzed along their growth trajectories. Our observation suggests that two mass transport mechanisms, i.e., surface diffusion and grain boundary diffusion, are responsible for the shape evolution of nanoparticles after a coalescence event.

Corresponding author
* Corresponding author.
Hide All
Bonevich J.E. & Marks L.D. (1992). The sintering behavior of ultrafine alumina particles. J Mater Res 7, 14891500.
Dai Z.R., Sun S.H. & Wang Z.L. (2001). Phase transformation, coalescence, and twinning of monodisperse FePt nanocrystals. Nano Lett 1, 443447.
Dong H., Moon K.-S. & Wong C.P. (2004). Molecular dynamics study on the coalescence of Cu nanoparticles and their deposition on the Cu substrate. J Elec Mater 33, 13261330.
Dong A., Tang R. & Buhro W.E. (2007a). Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires. J Am Chem Soc 129, 1225412262.
Dong A., Wang F., Daulton T.L. & Buhro W.E. (2007b). Solution-liquid-solid (SLS) growth of ZnSe-ZnTe quantum wires having axial heterojunctions. Nano Lett 7, 13081313.
Dong A., Yu H., Wang F. & Buhro W.E. (2008). Colloidal GaAs quantum wires: Solution-liquid-solid synthesis and quantum-confinement studies. J Am Cheml Soc 130, 59545961.
Eggers J. (1998). Coalescence of spheres by surface diffusion. Physl Rev Lett 80, 26342637.
Eustathopoulos N. (1983). Energetics of solid/liquid interfaces of metals and alloys. Int Metals Rev 28, 189210.
Fanfair D.D. & Korgel B.A. (2005). Bismuth nanocrystal-seeded III-V semiconductor nanowire synthesis. Cryst Growth Des 5, 19711976.
Grogan J.M., Rotkina L. & Bau H.H. (2011). In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys Rev E, 83, 061405.
Harada M. & Kamigaito Y. (2011). Nucleation and aggregative growth process of platinum nanoparticles studied by in situ quick XAFS spectroscopy. Langmuir 28, 24152428.
Hawa T. & Zachariah M.R. (2004). Molecular dynamics study of particle–particle collisions between hydrogen-passivated silicon nanoparticles. Phys Rev B 69, 035417.
Hawa T. & Zachariah M.R. (2006). Coalescence kinetics of unequal sized nanoparticles. J Aerosol Sci 37, 115.
Ingham B., Lim T.H., Dotzler C.J., Henning A., Toney M.F. & Tilley R.D. (2011). How nanoparticles coalesce: an in situ study of Au nanoparticle aggregation and grain growth. Chem Mater 23, 33123317.
Kuczynski G.C. (1949). Study of the sintering of glass. J Appl Phys 20, 11601163.
Lewis L.J., Jensen P. & Barrat J.L. (1997). Melting, freezing, and coalescence of gold nanoclusters. Phys Rev B 56, 22482257.
Li D., Nielsen M.H., Lee J.R.I., Frandsen C., Banfield J.F. & De Yoreo J.J. (2012). Direction-specific interactions control crystal growth by oriented attachment. Science 336, 10141018.
Liao H.-G., Cui L., Whitelam S. & Zheng H. (2012). Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 10111014.
Liao H.-G., Niu K. & Zheng H. (2013). Observation of growth of metal nanoparticles. Chem Commun 49, 1172011727.
Lim T.H., McCarthy D., Hendy S.C., Stevens K.J., Brown S.A. & Tilley R.D. (2009). Real-time TEM and kinetic Monte Carlo studies of the coalescence of decahedral gold nanoparticles. ACS Nano 3, 38093813.
Liu L., Li X., Wu X., Chen X. & Chu P.K. (2011). Growth of tin oxide nanorods induced by nanocube-oriented coalescence mechanism. Appl Phys Lett 98, 133102133103.
Liu Y.Z., Lin X.M., Sun Y.G. & Rajh T. (2013). In situ visualization of self-assembly of charged gold nanoparticles. J Am Chem Soc 135, 37643767.
McCarthy D.N. & Brown S.A. (2009). Evolution of neck radius and relaxation of coalescing nanoparticles. Phys Rev B, 80, 064107.
Mullins W.W. (1957). Theory of the thermal grooving. J Appl Phys 28, 333339.
Mullins W.W. (1959). Flattening of a nearly plane solid surface due to capillarity. J Appl Phys 30, 7783.
Nichols F.A. & Mullins W.W. (1965). Morphological changes of a surface of revolution due to capillarity—induced surface diffusion. J Appl Phys 36, 18261835.
Niu K., Liao H. & Zheng H. (2012). Revealing dynamic processes of materials in liquids using liquid cell transmission electron microscopy. J Vis Exp 70, e50122.
Niu K.-Y., Park J., Zheng H. & Alivisatos A.P. (2013). Revealing bismuth oxide hollow nanoparticle formation by Kirkendall effect. Nano Lett 13, 57155719.
Palasantzas G., Vystavel T., Koch S.A. & De Hosson J.T.M. (2006). Coalescence aspects of cobalt nanoparticles during in situ high-temperature annealing. J Appl Phys, 99, 024307.
Richards V.N., Rath N.P. & Buhro W.E. (2010a). Pathway from a molecular precursor to silver nanoparticles: the prominent role of aggregative growth. Chem Mater 22, 35563567.
Richards V.N., Shields S.P. & Buhro W.E. (2010b). Nucleation control in the aggregative growth of bismuth nanocrystals. Chem Mater 23, 137144.
Simonsen S.B., Chorkendorff I., Dahl S., Skoglundh M., Sehested J. & Helveg S. (2010). Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J Am Chem Soc 132, 79687975.
Ustarroz J., Hammons J.A., Altantzis T., Hubin A., Bals S. & Terryn H. (2013). A generalized electrochemical aggregative growth mechanism. J Am Chem Soc 135, 1155011561.
Vaughn D.D., Hentz O.D., Chen S., Wang D. & Schaak R.E. (2012). Formation of SnS nanoflowers for lithium ion batteries. Chem Commun 48, 56085610.
Vaughn D.D., In S.-I. & Schaak R.E. (2011). A precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: the case of SnSe. ACS Nano 5, 88528860.
Wang F., Tang R., Yu H., Gibbons P.C. & Buhro W.E. (2008). Size- and shape-controlled synthesis of bismuth nanoparticles. Chem Mater 20, 36563662.
Yuk J.M., Park J., Ercius P., Kim K., Hellebusch D.J., Crommie M.F., Lee J.Y., Zettl A. & Alivisatos A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 6164.
Zachariah M.R. & Carrier M.J. (1999). Molecular dynamics computation of gas-phase nanoparticle sintering: A comparison with phenomenological models. J Aerosol Sci 30, 11391151.
Zhang W. & Gladwell I. (1998). Sintering of two particles by surface and grain boundary diffusion—a three-dimensional model and a numerical study. Comp Mater Sci 12, 84104.
Zhang W. & Schneibel J.H. (1995). The sintering of two particles by surface and grain boundary diffusion—a two-dimensional numerical study. Acta Metallurgica et Materialia 43, 43774386.
Zheng H., Smith R.K., Jun Y.-w., Kisielowski C., Dahmen U. & Alivisatos A.P. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 13091312.
Zhu H.L. & Averback R.S. (1996). Sintering processes of two nanoparticles: A study by molecular-dynamics. Philos Mag Lett 73, 2733.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Niu Supplementary Material
Movie 1

 Video (15.0 MB)
15.0 MB
Supplementary materials

Niu Supplementary Material
Supplementary Material

 Word (1.5 MB)
1.5 MB
Supplementary materials

Niu Supplementary Material
Movie 2

 Video (11.9 MB)
11.9 MB


Full text views

Total number of HTML views: 18
Total number of PDF views: 123 *
Loading metrics...

Abstract views

Total abstract views: 432 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd January 2018. This data will be updated every 24 hours.