Skip to main content
×
Home

Wet-STEM Tomography: Principles, Potentialities and Limitations

  • Karine Masenelli-Varlot (a1), Annie Malchère (a1), José Ferreira (a1), Hamed Heidari Mezerji (a2), Sara Bals (a2), Cédric Messaoudi (a3) (a4) and Sergio Marco Garrido (a3) (a4)...
Abstract
Abstract

The characterization of biological and inorganic materials by determining their three-dimensional structure in conditions closer to their native state is a major challenge of technological research. Environmental scanning electron microscopy (ESEM) provides access to the observation of hydrated samples in water environments. Here, we present a specific device for ESEM in the scanning transmission electron microscopy mode, allowing the acquisition of tilt-series suitable for tomographic reconstructions. The resolution which can be obtained with this device is first determined. Then, we demonstrate the feasibility of tomography on wet materials. The example studied here is hydrophilic mesoporous silica (MCM-41). Finally, the minimum thickness of water which can be detected is calculated from Monte Carlo simulations and compared with the resolution expected in the tomograms.

Copyright
Corresponding author
* Corresponding author. Karine.Masenelli-Varlot@insa-lyon.fr
References
Hide All
Blavette D., Bostel A., Sarrau J.M., Deconihout B. & Menand A. (1993). An atom probe for three-dimensional tomography. Nature 363, 432435.
Bogner A. (2006). Le mode d’imagerie wet-STEM: développement, optimisation et compréhension. Application aux mini-émulsions et latex. PhD thesis, INSA de Lyon, France. Available at http://theses.insa-lyon.fr/publication/2006ISAL0066/these.pdf (19/09/2013).
Bogner A., Thollet G., Basset D., Jouneau P.H. & Gauthier C. (2005). Wet-STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104, 290301.
Crowther R.A., Derosier D.J. & Klug A. (1970). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc R Soc A 317, 319340.
Danilatos G.D. (1993). Introduction to the ESEM instrument. Microsc Res Tech 25, 354361.
De Jonge N. & Ross F.M. (2011). Electron microscopy of specimens in liquid. Nature Nanotechnology 6, 695704.
Donald A.M. (2003). The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nature Mater 2, 511516.
Fletcher A.L., Thiel B.L. & Donald A.M. (1997). Amplification measurements of alternative imaging gases in environmental SEM. J Phys D: Appl Phys 30, 2249.
Gauthier C., Jornsanoh P., Masenelli-Varlot K. & Thollet G. (2006). Montage pour effectuer de la tomographie électronique dans un microscope électronique à balayage et à pression contrôlée. FR Patent 06, 09708.
Goris B., Roelandts T., Batenburg K.J., Heidari Mezerji H. & Bals S. (2013). Advanced reconstruction algorithms for electron tomography: from comparison to combination. Ultramicroscopy 127, 4047.
Goris B., Van Den Broek W., Batenburg K.J., Heidari Mezerji H. & Bals S. (2012). Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy 113, 120130.
Harauz G. & Van Heel M. (1986). Exact filters for general geometry three dimensional reconstruction. Optik 73, 146156.
Huang W., Yibei F., Chaoyang W., Yunshu X. & Zhishang B. (2002). A study on radiation resistance of siloxane foam containing phenyl. Rad Phy Chem 64, 229233.
Jornsanoh P., Thollet G., Ferreira J., Masenelli-Varlot K., Gauthier C. & Bogner A. (2011). Electron tomography combining ESEM and STEM: A new 3D imaging technique. Ultramicroscopy 111, 12471254.
Koster A.J., Ziese U., Verkleij A.J., Janssen A.H. & De Jong K.P. (2000). Three-dimensional transmission electron microscopy: A novel imaging and characterization technique with nanometer scale resolution for materials science. J Phy Chem B 104, 93689370.
Kubis A.J., Shiflet G.J., Dunn D.N. & Hull R. (2004). Focused ion beam Tomography. Metallurgical Mater Trans A 35A, 19351943.
Leary R., Midgley P.A. & Thomas J.M. (2012). Recent advances in the application of electron tomography to materials chemistry. Acc Chem Res 45, 17821791.
Maire E., Buffiere J.Y., Salvo L., Blandin J.J., Ludwig W. & Letang J.M. (2001). On the application of X-ray microtomography in the field of materials science. Adv Eng Mater 3, 539546.
Mancuso J.J. (2012). Large volumes at high resolution using serial block face imaging in the SEM. Microsc Microanal 18(S2), 104105.
Martini M., Roux S., Montagna M., Pansu R., Julien C., Tillement O. & Perriat P. (2010). How gold inclusions increase the rate of fluorescein energy homotransfer in silica beads. Chem Phy Lett 490, 7275.
Messaoudi C., Aschman N., Cunha M., Oikawa T., Sanchez Sorzano C.O. & Marco S. (2013). Three dimensional chemical mapping by EFTEM-TomoJ including improvement of SNR by PCA and ART reconstruction of volume by noise suppression. Microsc Microanal 28, 19.
Messaoudi C., Boudier T., Sanchez Sorzano C.O. & Marco S. (2007). TomoJ: Tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 8, 288297.
Nelson A.C. (1988). Scanning electron microscope for visualization of wet samples. US Patent 4,720,633.
Peckys D.B. & De Jonge N. (2011). Visualization of gold nanoparticle uptake in living cells with liquid scanning transmission electron microscopy. Nano Letters 11, 17331738.
Ribeiro Carrott M.M.L., Estêvão Candeias, Carrott P.J.M. & Unger K.K. (1999). Evaluation of the stability of pure silica MCM-41 toward water vapor. Langmuir 15, 88958901.
Ring E.A. & De Jonge N. (2012). Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid. Micron 43, 10781084.
Ruska E. (1942). Beitrag zur übermikroskopischen Abbildingen bei Höheren Drucken. Kolloid-Zeitschrift 100, 212219.
Trewyn B.G., Slowing I., Giri S., Chen H.T. & Lin V.S. (2007). Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc Chem Res 40, 846853.
Weyland M. (2002). Electron tomography of catalysts. Catalysis 21, 175183.
Zhao X.S., Audsley K. & Lu G.Q. (1998). Irreversible change of pore structure of MCM-41 upon hydration at room temperature. J Phy Chem B 102, 41434146.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 35 *
Loading metrics...

Abstract views

Total abstract views: 232 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.