Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T01:30:16.181Z Has data issue: false hasContentIssue false

Maletoyvayamite, Au3Se4Te6, a new mineral from Maletoyvayam deposit, Kamchatka peninsula, Russia

Published online by Cambridge University Press:  21 January 2020

Nadhezda D. Tolstykh
Affiliation:
VS Sobolev Institute of Geology and Mineralogy, SB RAS, prosp. Akademika Koptyuga 3, 630090, Novosibirsk, Russia Novosibirsk State University, Pirogova street 1, Novosibirsk, 630090, Russia
Marek Tuhý*
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic Institute of Mineralogy, Geochemistry and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00Prague, Czech Republic
Anna Vymazalová
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, 128 21 Prague 8, Czech Republic
František Laufek
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
Anatoly V. Kasatkin
Affiliation:
Fersman Mineralogical Museum of Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071Moscow, Russia
Fabrizio Nestola
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
Olga V. Bobrova
Affiliation:
StekloSoyuz, Dept of raw materials, Zhuravleva 2, Moscow107023, Russia
*
*Author for correspondence: Marek Tuhy, Email: marek.tuhy@geology.cz

Abstract

Maletoyvayamite, Au3Se4Te6, is a new mineral discovered in a heavy-mineral concentrate from the Gaching occurrence of the Maletoyvayam deposit, Kamchatka, Russia (60°19′51.87″N, 164°46′25.65″E). It forms anhedral grains (10 to 50 μm in size) and is found in intergrowths with native gold (Au–Ag), Au tellurides (calaverite), unnamed phases (AuSe, Au2TeSe and Au oxide), native tellurium, sulfosalts (tennantite, tetrahedrite, goldfieldite and watanabeite) and supergene tripuhyite. Maletoyvayamite has a good cleavage on {010} and {001}. In plane-polarised light, maletoyvayamite is grey, has strong bireflectance (grey to bluish grey), and strong anisotropy; it exhibits no internal reflections. Reflectance values for maletoyvayamite in air (Rmin,Rmax in %) are: 38.9, 39.1 at 470 nm; 39.3, 39.5 at 546 nm; 39.3, 39.6 at 589 nm; and 39.4, 39.7 at 650 nm. Sixteen electron-microprobe analyses of maletoyvayamite gave an average composition: Au 34.46, Se 16.76, Te 47.23 and S 0.84, total 99.29 wt.%, corresponding to the formula Au2.90(Se3.52S0.44)Σ3.96Te6.14 based on 13 atoms; the average of eleven analyses on synthetic analogue is: Au 34.20, Se 19.68 and Te 45.42, total 99.30 wt.%, corresponding to Au2.90Se4.16Te5.94. The calculated density is 7.98 g/cm3. The mineral is triclinic, space group P1, with a = 8.901(2), b = 9.0451(14), c = 9.265(4) Å, α = 97.66(3), β = 106.70(2), γ = 101.399(14)°, V = 685.9(4) Å3 and Z = 2. The crystal structure of maletoyvayamite represents a unique structure type resembling a molecular structure. There are cube-like [Au6Se8Te12] clusters linked via van der Waals interactions. The structural identity of maletoyvayamite with the synthetic Au3Se4Te6 was confirmed by powder X-ray diffraction and Raman spectroscopy.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Juraj Majzlan

References

Bindi, L., Nestola, F. and Makovicky, E. (2013) Sinnerite, Cu6As4S9, from the lengenbach quarry, Binn Valley, Switzerland: Description and re-investigation of the crystal structure. The Canadian Mineralogist, 51, 851860.CrossRefGoogle Scholar
Bindi, L., Paar, W.H. and Lepore, G.O. (2018) Montbrayite, (Au,Ag,Sb,Pb,Bi)23(Te,Sb,Pb,Bi)38, from the Robb-Montbray mine, Québec: Crystal structure and revision of the chemical formula. The Canadian Mineralogist, 56, 129142.CrossRefGoogle Scholar
Bruker, AXS (2014) TOPAS Software User Manual Version 4.2. Karlsruhe, Germany.Google Scholar
Brylev, K.A. (2013) Novel crystal structures of potassium salts of chalcohydroxo cluster complexes [Re6Q8(OH)6)]4- (Q = S or Se), Journal of Structural Chemistry, 54, 196200.CrossRefGoogle Scholar
Goryachev, N.A., Volkov, A.V., Gamyanin, G.N., Sidorov, A.A., Savva, N.E. and Okrugin, V.M. (2010) Au-Ag mineralization of volcanic belts of the North-East of Asia. Lithosphere, 5, 3350 [in Russian].Google Scholar
Kalinin, K.B., Andreeva, E.D. and Yablokova, D.A. (2012) Textures and structures of Jubilee ore occurrence (Maletoyvayam ore field). Pp. 3948 in: Materials XI Regional youth scientific conference “The Natural Environment of Kamchatka”. Petropavlovsk-Kamchatsky, Russia [in Russian].Google Scholar
Melkomukov, B.H., Razumny, A.V., Litvinov, A.P. and Lopatin, W.B. (2010) New highly promising gold objects of Koryakiya. Mining Bulletin of Kamchatka, 14, 7074 [in Russian].Google Scholar
Mullen, D.J.E. and Nowacki, W. (1972) Refinement of the crystal structures of realgar, AsS and orpiment, As2S3. Zeitschrift für Kristallographie, 136, 4865.CrossRefGoogle Scholar
Okrugin, BM (2003) New data on the age and genesis of epithermal deposits of transition zone continent-ocean (Pacific Northwest): Geodinamika, magmatism and metallogeny of continental margins of the North Pacific. Pp. 3941 in: Materials XII All-Union conference “Annual Meeting of the North-Eastern Branch of the WMO”. Magadan, Russia [in Russian].Google Scholar
Okrugin, V.M., Andreeva, E.D., Yablokova, D.A., Okrugina, A.M., Chubarov, V.M. and Ananiev, V.V. (2014) The new data on the ores of the Aginskoye gold-telluride deposit (Central Kamchatka). Pp. 335341 in: Materials conference “Volcanism and its Associated Processes”. Petropavlovsk-Kamchatsky, Russia [in Russian].Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic computing system JANA2006: General features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Rabenau, A. and Schulz, H. (1976) The crystal structure of α-AuSe and β-AuSe. Journal of the Less-Common Metals, 48, 89101.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal Structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Tolstykh, N., Vymazalová, A., Petrova, E. and Stenin, N. (2017) The Gaching Au mineralization in the Maletoivayam ore field, Kamchatka, Russia. Pp. 195198 in: Materials Mineral Resources to Discover. Proceedings of the 14th Biennial SGA Meeting, 17–20 August 2017, Quebec City, Canada, Vol. 1.Google Scholar
Tolstykh, N., Vymazalová, A., Tuhý, M., and Shapovalova, M. (2018) Conditions of Au-Se-Te mineralization in the Gaching ore occurence (Maletoivayam ore field), Kamchatka, Russia. Mineralogical Magazine, 82, 649674.CrossRefGoogle Scholar
Tolstykh, N., Palyanova, G., Bobrova, O. and Sidorov, E. (2019a) Mustard gold of the Gaching ore deposit (Maletoyvayam ore Field, Kamchatka, Russia). Minerals, 9, 489, https://doi.org/10.3390/min9080489CrossRefGoogle Scholar
Tolstykh, N., Tuhý, M., Vymazalová, A., Plášil, J., Laufek, F., Kasatkin, A.V. and Nestola, F. (2019b) Maletoyvayamite, IMA 2019-021. CNMNC Newsletter No. 50, Mineralogical Magazine, 83, https://doi.org/10.1180/mgm.2019.46Google Scholar
Tsukanov, N.V. (2015) Tectono-stratigraphic terranes of Kamchatka active margins: Structure, composition and geodynamics. Pp. 97103 in: Materials of the Annual conference “Volcanism and Related Processes”. Petropavlovsk-Kamchatsky, Kamchatka Krai, Russia [in Russian]Google Scholar
Supplementary material: File

Tolstykh et al. supplementary material

Tolstykh et al. supplementary material

Download Tolstykh et al. supplementary material(File)
File 182.1 KB