Skip to main content Accessibility help

Franconite, NaNb2O5(OH)·3H2O: structure determination and the role of H bonding, with comments on the crystal chemistry of franconite-related minerals

  • M. M. M. Haring (a1) and A. M. McDonald (a1)


The crystal structure of franconite, NaNb2O5(OH)·3H2O, has been characterized by single-crystal X-ray diffraction using material from Mont Saint-Hilaire, Québec, Canada. Results give a = 10.119(2), b = 6.436(1), c = 12.682(2) Å and β = 99.91(3)° and confirm the correct space group as P21/c. The crystal structure, refined to R = 4.63% and wR 2 =11.95%, contains one Na site, two distorted octahedral Nb sites and nine O sites. It consists of clusters of four edge-sharing Nb(O,OH)6 octahedra, linked through shared corners to adjacent clusters, forming layers of Nb(O,OH)6 octahedra. These alternate along [100] with layers composed of NaO(H2O)4 polyhedra, the two being linked together by well defined H bonding. The predominance of H bonding, essential to the mineral, results in a perfect {100} cleavage. Chemical analyses (n = 7) of four crystals give the empirical formula (Na0.73Ca0.13☐0.14)∑=1.00(Nb1.96Ti0.02Si0.02Al0.01)∑=2.01O5(OH)·3H2O (based on nine oxygens) or ideally NaNb2O5(OH)·3H2O. Franconite is crystallo-chemically related to SOMS [Sandia Octahedral Molecular Sieves; Na2Nb2−x MxO6−x (OH) x ·H2O with M = Ti, Zr, Hf], a group of synthetic compounds with strong ion-exchange capabilities. Both hochelagaite (CaNb4O11·nH2O) and ternovite (MgNb4O11·nH2O) have X-ray powder diffraction patterns and cation ratios similar to those of franconite indicating that these minerals probably have similar structures.


Corresponding author


Hide All
Atencio, D., Chukanov, N.V., Nestola, F., Witzke, T., Coutinho, J.M.V., Zadov, A.E., Filho, R.R.C. and Färber, G. (2012) Mejillonesite, a new acid sodium, magnesium phosphate mineral, from Mejillones Antofagasta, Chile. American Mineralogist, 97, 1925.
Babechuk, M.G. and Kamber, B.S. (2011) An estimate of 1.9 Ga mantle depletion using the high-fieldstrength elements and Nd–Pb isotopes of ocean floor basalts, Flin Flon Belt, Canada. Precambrian Research, 189, 114139.
Barshad, I. (1952) Adsorptive and swelling properties of clay-water system. Clays and Clay Minerals, 1, 7077.
Belovitskaya, Y.V. and Pekov, I.V. (2004) Genetic mineralogy of the burbankite group. New Data on Minerals, 39, 5064.
Brese, N.E. and O’Keefe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.
Chao, G.Y., Conlon, R.P. and Velthuizen, J. (1990) Mont Saint-Hilaire unknowns. The Mineralogical Record, 21, 363368.
Cooper, M.A. and Hawthorne, F.C. (2012) The crystal structure of kraisslite, [4]Zn3(Mn,Mg)25(Fe3+,Al) (As3+O3)2[(Si,As5+)O4]10(OH)16, from Sterling Hill mine, Ogdensburg, Sussex County, New Jersey, USA. Mineralogical Magazine, 76, 28192836.
Cromer, D.T. and Mann, J.B. (1968) X-ray scattering factors computed from numerical Hartree-Frock wave functions. Acta Crystallographica, A24, 321324.
Cromer, D.T. and Liberman, D. (1970) Relativistic calculation of anomalous scattering factors for X rays. Journal of Physics and Chemistry, 53, 18911898.
Dowty, E. (2002) CRYSCON for Windows and Macintosh Version 1.1. Shape Software Kingsport, Tennessee, USA.
Ercit, T.S., Cooper, M.A. and Hawthorne, F.C. (1998) The crystal structure of vuonnemite, Na11Ti4+Nb2(Si2O7)2(PO4)2O3(F,OH), a phosphatebearing sorosilicate of the lomonosovite group. The Canadian Mineralogist, 36, 13111320.
Fielicke, A., Meijer, G. and Von Helden, G. (2003) Infrared spectroscopy of niobium oxide cluster cations in a molecular beam: identifying the cluster structures. Journal of the American Chemical Society, 125, 36593667.
Fukoka, H., Isami, T. and Yamanaka, S. (2000) Crystal structure of a layered perovskite niobate KCa2Nb3O10. Journal of Solid State Chemistry, 151, 4045.
Haring, M.M.M., McDonald, A.M., Cooper, M.A. and Poirier, G.A. (2012) Laurentianite, [NbO(H2O)]3 (Si2O7)2[Na(H2O)2]3, a new mineral from Mont Saint-Hilaire, Québec: description, crystal-structure determination and paragenesis. The Canadian Mineralogist, 50, 12651280.
Horváth, L. and Gault, R.A. (1990) The mineralogy of Mont Saint-Hilaire Québec. The Mineralogical Record, 21, 284359.
Horváth, L., Pfenninger-Horváth, E., Gault, R.A. and Tarassoff, P. (1998) Mineralogy of the Saint-Amable Sill, Varennes and Saint-Amable, Québec. The Mineralogical Record, 29, 83118.
Iliev, M., Phillips, M.L.F., Meen, J.K. and Nenoff, T.M. (2003) Raman spectroscopy Na2Nb2O6·H2O and Na2Nb2–xMxO6–x(OH)x·H2O (M = Ti, Hf) ion exchangers. Journal of Physical Chemistry, B 107, 1426114264.
Jambor, J.L., Sabina, A.P., Roberts, A.C., Bonardi, M., Ramik, R.R. and Sturman, B.D. (1984) Franconite, a new hydrated Na-Nb oxide mineral from Montreal Island, Québec. The Canadian Mineralogist, 22, 239243.
Jambor, J.L., Sabina, A.P., Roberts, A.C., Bonardi, M., Owens, D.R. and Sturman, B.D. (1986) Hochelagaite, a new calium-niobium oxide mineral from Montreal, Québec. The Canadian Mineralogist, 24, 449453.
Jehng, J.M. and Wachs, I.E. (1990) Structural chemistry and Raman spectra of niobium oxides. Chemistry of Materials, 3, 101107.
Masó, N., Woodward, D.I., Várez, A. and West, A.R. (2011) Polymorphism, structural characterization and electrical properties of Na2Nb4O11. Journal of Material Chemistry, 21, 1209612102.
Megaw, H.D. (1968a) A simple theory of the off center displacement of cation in octahedral environment. Acta Crystallographica, B24, 149153.
Megaw, H.D. (1968b) The thermal expansion of interatomic bonds, illustrated by experimental evidence from niobates. Acta Crystallographica, A24, 589604.
Nikandrov, S.N. (1990) Franconite, first find in the USSR. Doklady Academii Nauk SSSR, 305, 700703. [in Russian].
Nyman, M., Tripathi, A., Parise, J.B., Maxwell, R.S., Harrison, W.T.A. and Nenoff, T.M. (2001) A new family of octahedral molecular sieves: Sodium Ti/ZrIV niobates. Jounral of the American Chemical Society, 123, 15291530.
Nyman, M., Tripathi, A., Parise, J.B., Maxwell, R.S. and Nenoff, T.M. (2002) Sandia octahedral molecular sieves (SOMS): Structural and property effects of charge-balancing the MIV-substituted (M = Ti, Zr) niobate framework. Journal of the American Chemical Society, 124, 17041713.
Pekov, I.V. and Podlesnyi, A.S. (2004) Kukisvumchorr deposit: Mineralogy of alkaline pegmatites and hydrothermalites. Mineralogical Almanac, 7, 6065.
Rastsvetaeva, R.K., Tamazyan, R.A., Pushcharovsky, D.Y. and Nadezhina, T.N. (1994) Crystal structure and microtwinning of K-rich nenadkevichite. European Journal of Mineralogy, 6, 503509.
Salles, F., Douillard, J., Denoyel, R., Bildstein, O., Jullien, M., Beurroies, I. and Damme, H. (2009) Hydration sequence of swelling clays: Evolutions of specific surface area and hydration energy. Journal of Colloid and Interface Science, 333, 510522.
Schilling, J., Marks, M.A.W., Wenzel, T., Vennemann, T., Horváth, L., Tarassoff, P., Jacob, D.E. and Markl, G. (2011) Magmatic to hydrothermal evolution of the intrusive Mont Saint-Hilaire complex: insights into the late-stage evolution of peralkaline rocks. Journal of Petrology, 52, 21472185.
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies in interatomic distances in halides and chalogenides. Acta Crystallographica, A32, 751767.
Sheldrick, G.M. (1997) SHELX-97: A program for crystal structure refinement. University of Göttingen, Göttingen, Germany.
Sokolova, E. and Hawthorne, F.C. (2004) The crystal chemistry of epistolite. The Canadian Mineralogist, 42, 797806.
Sokolova, E. and Hawthorne, F.C. (2008) From structure topology to chemical composition. V. Titanium silicates: The crystal chemistry of nacareniobsite- (Ce). The Canadian Mineralogist, 46, 13331342.
Subbotin, V.V., Voloshin, A.V., Pakhomovskii, Y.A., Men’shikov, Y.P. and Subbotina, G.F. (1997) Ternovite, (Mg,Ca)Nb4O11·nH2O, a new mineral and other hydrous tetraniobates from carbonatites of the Vuoriyarvi massif, Kola Peninsula, Russia. Neues Jahrbuch für Mineralogie, 2, 4960.
Uvarova, Y.A., Sokolova, E., Hawthorne, F.C., Pautov, L.A. and Agakhanov, A.A. (2004) A novel [Si18O45]18- sheet in the crystal structure of zeravshanite, Cs4Na2Zr3[Si18O45](H2O)2. The Canadian Mineralogist, 42, 125134.
Williams, Q. (1995) Infrared, Raman and optical spectroscopy of Earth materials. Pp. 291–302 in: Mineral Physics and Crystallography: a Handbook of Physical Constants (T.J. Ahrens, editor), AGU Reference Shelf Vol 2. American Geophysical Union, Washington, D.C.
Xu, H., Nyman, M., Nenoff, T.M. and Navrotsky, A. (2004) Prototype sandia octahedral molecular sieve (SOMS) Na2Nb2O6·H2O: Synthesis, structure and thermodynamic stability. Chemistry of Materials, 16, 20342040.
Yim, H., Yoo, S., Nahm, S., Hwang, S., Yoon, S. and Choi, J. (2013) Synthesis and dielectric properties of layered HCa2Nb3O10 structure ceramics. Ceramics International, 39, 611614.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed