Skip to main content Accessibility help
×
×
Home

Sulphide mylonites from the Renström VMS deposit, Northern Sweden

  • Rowena C. Duckworth (a1) and David Rickard (a1)

Abstract

Sulphide mylonites are fine-grained massive sulphides which have deformed in a plastic manner. In the Renström Zn-Pb-Cu-Ag-Au VMS deposit, one of several operating mines in the Early Proterozoic Skellefte District in Northern Sweden, shear-zone metamorphism has resulted in the development of mylonitic fabrics within the sulphides. The massive sulphide ore is hosted in a shallow submarine to subaerial volcano-sedimentary sequence which has been variably metamorphosed and deformed. Initially, the sequence underwent burial metamorphism which was followed by an amphibolite grade regional metamorphic event at pressures of around 7.5 kbar and temperatures of 540-600°C This has been overprinted by a retrogressive metamorphic event at greenschist facies (at ca. 400°C with concomitant ductile deformation. Finally the area was uplifted to shallower crustal levels with associated cataclastic deformation.

Both the regional and dynamic metamorphic events have resulted in the development of specific textures in the sulphide ores. Textural evidence indicates that pressure solution has been mainly responsible for the plastic deformation in pyrite, while the weaker sulphide minerals such as pyrrhotite, chalcopyrite and galena have generally recrystallised in response to the high strains.

Sulphide mylonites are probably common rocks in many polydeformed massive sulphide deposits like Renström. They may have previously been misinterpreted as primary depositional textures.

Copyright

References

Hide All
Clark, B. R. and Kelly, W. C. (1976) Experimental deformation of common sulphide minerals. In Physics and chemistry of minerals and rocks (R. G. G. Strcns, ed.). Wiley, New York, 5169.
Cox, S. F. (1987) Flow mechanisms in sulphide min-erals. Ore Geology Reviews, 2, 13371.
Cox, S. F. Etheridge, M. A., and Hobbs, B. E. (1981) The experimental ductile deformation of polycrystalline and single crystal pyrite. Econ. Geol., 76, 10517.
Duckworth, R. C. (1991) The geology and depositional environment of the Early Proterozoic massive sulphide-bearing sequence, Renström, Northern Sweden. Unpublished PhD thesis, University of Wales, College of Cardiff.
Gaál, G. (1990) Tectonic styles of Early Proterozoic ore deposition in the Fennoscandian Shield. Precamb. Res., 46, 83114.
Higgs, D. V. and Handin, J. W. (1959) Experimental deformation of dolomite single crystals. Geol. Soc. Am. Bull., 70, 24578.
Knipe, R. J. (1989) Deformation mechanisms—recognition from natural tectonites. J. Struct. Geol., 11, 12746.
Marshall, B. and Gilligan, L. B. (1987) An introduction to remobilisation: Information from ore-body geometry and experimental considerations. Ore Geology Reviews, 2, 87131.
Marshall, B. and Gilligan, L. B. (1989) Durchbewegung structure, piercement cusps and piercement veins in massive sulphide deposits: Formation and interpretation. Econ. Geol., 84, 23119.
McClay, K. R. and Ellis, P. G. (1983) Deformation and recrystallisation of pyrite. Mineral Mag., 74, 527-38.
McClay, K. R. and Ellis, P. G. (1984) Deformation of pyrite. Econ. Geol., 79, 400-3.
Nicolas, A. and Poirier, J.-P. (1976) Crystalline plasticity and solid state flow in metamorphic rocks. Wiley-Interscience, London. pp. 444.
Ohmoto, H. and Rye, R. O. (1979) Isotopes of sulphur and carbon. In Geochemistry of hydrothermal ore deposits (H. L. Barnes ed.). Wiley & Sons, 509-67.
Rickard, D. T., ed. (1986) The Skellefte Field. SGU ser. Ca, Nr. 62.
Scott, S. D. (1973) Experimental calibration of the sphalerite geobarometer. Econ. Geol., 68, 46674.
Skiöld, T. (1988) Implications of new U-Pb zircon chronology to Early Proterozoic crustal accretion in Northern Sweden. Precamb. Res., 38, 14764.
Stanton, R. L. (1972) Ore Petrology. McGraw-Hill, New York, 713 pp.
Vokes, F. M. (1973) ‘Ball texture’ in sulphide ores. Geol. Fören. Förh, 195, 4036.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mineralogical Magazine
  • ISSN: 0026-461X
  • EISSN: 1471-8022
  • URL: /core/journals/mineralogical-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed