Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T14:19:10.090Z Has data issue: false hasContentIssue false

Thermal behaviour of libethenite from room temperature up to dehydration

Published online by Cambridge University Press:  05 July 2018

M. Zema*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Pavia, via Ferrata 1, I-27100 Pavia, Italy CNR-IGG, Sezione di Pavia, via Ferrata 1, I-27100 Pavia, Italy
S. C. Tarantino
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Pavia, via Ferrata 1, I-27100 Pavia, Italy CNR-IGG, Sezione di Pavia, via Ferrata 1, I-27100 Pavia, Italy
A. M. Callegari
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Pavia, via Ferrata 1, I-27100 Pavia, Italy

Abstract

The structural modifications with temperature of libethenite, Cu2(PO4)(OH), were determined by single-crystal X-ray diffraction up to dehydration and consequent decomposition of the crystal under investigation. In the temperature range 25–475°C, libethenite shows positive and linear expansion. The axial thermal expansion coefficients, determined over this temperature range, are: αa = 6.6(1)·10–6 K–1, αb = 1.21(2)·10–5 K–1, αc = 9.0(2)·10–6 K–1, αv = 2.78(3)·10–5 K–1. Axial expansion is then anisotropic with αabc = 1:1.83:1.33.

Structure refinements of X-ray diffraction data collected at different temperatures allowed us to characterize the mechanisms by which the libethenite structure accommodates variations in temperature. Increasing temperature induces expansion of both Cu polyhedra and no significant variation of the PO4 tetrahedron, which acts as a rigid unit. Cu(1) octahedra expand mostly as a consequence of the increase of the axial bonds, and become more distorted. Starting from T = 500°C, precursor signs of incoming dehydration are visible: two adjacent OH groups approach each other and cause dramatic changes in the whole structure. Concomitantly, the libethenite crystal begins to deteriorate and, at T = 600°C, broad and weak diffraction effects of polycrystalline material are observed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belik, A.A., Koo, H.-J., Whangbo, M.-H., Tsujii, N., Naumov, P. and Takayama-Muromachi, E. (2007) Magnetic properties of synthetic libethenite Cu2PO4OH: a new spin-gap system. Inorganic Chemistry, 46, 86848689.CrossRefGoogle ScholarPubMed
Blessing, R.H. (1995) An empirical correction for absorption anisotropy. Acta Crystallographica, A51, 3338.CrossRefGoogle Scholar
Blessing, R.H., Coppens, P. and Becker, P. (1974) Computer analysis of step-scanned X-ray data. Journal of Applied Crystallography, 7, 488492.CrossRefGoogle Scholar
Brunel-Laügt, M., Durif, A. and Guitel, J.C. (1978) Structure cristalline de Cu4(PO4)2O. Journal of Solid State Chemistry, 25, 3947.CrossRefGoogle Scholar
Busing, W.R. and Levy, H.A. (1964) The effect of thermalmotion on the estimation of bond lengths from diffraction measurements. Acta Crystallographica, 17, 142146.CrossRefGoogle Scholar
Cordsen, A. (1978) A crystal-structure refinement of libethenite. The Canadian Mineralogist, 16, 153157.Google Scholar
Heritsch, H. (1940) Die Struktur des Libethenites Cu2(OH)[PO4]. Zeitschrift für Kristallographie, 102, 112.CrossRefGoogle Scholar
Huminicki, D.M.C. and Hawthorne, F.C. (2002) The crystalchemistry of phosphate minerals. Pp. 123253 in: Phosphates – Geochemical, Geobiological and Materials Importance (Kohn, M.L., Rakovan, J. and Hughes, J.M., editors). Mineralogical Society of America, Washington D.C. and the Geochemical Society, St. Louis, Missouri, USA.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. (1974) International Tables for X-ray Crystallography. Kynoch Press, Birmingham, UK, vol. 4, pp. 99101.Google Scholar
Johnson, C.K. (1970 a) Generalized treatments for thermalmotion. Pp. 132160 in: Thermal Neutron Diffraction (Willis, B.T.M., ditor). Oxford University Press, Oxford, UK.Google Scholar
Johnson, C.K. (1970 b) An introduction to thermal motion analysis. Pp. 220226 in: Crystallographic Computing (Ahmed, F.R., editor). Munksgaard, Copenhagen.Google Scholar
Keller, P., Hess, H. and Zettler, F. (1979) Ladungsbilanzen an den verfeinerten Kristallstrukturen von Libethenit, Adamin und Co[OH/AsO4] und ihre Wasserstoffbrückenbindungen. Neues Jahrbuch für Mineralogie, Abhandlungen, 134, 147159.Google Scholar
Lehman, M.S. and Larsen, F.K. (1974) A method for location of the peaks in step-scan measured Bragg reflections. Acta Crystallographica, A30, 580584.CrossRefGoogle Scholar
Li, C., Yang, H. and Downs, R.T. (2008) Redetermination of olivenite from an untwinned single-crystal. Acta Crystallographica, E64, i60i61.Google Scholar
Mills, S.J., Kampf, A.R., Poirier, G., Raudsepp, M. and Steele, I.A. (2010) Auriacusite, Fe3+Cu2+AsO4O, the first M 3+ member of the olivenite group, from the Black Pine mine, Montana, USA. Mineralogy and Petrology, 99, 113120.CrossRefGoogle Scholar
North, A.C.T., Phillips, D.C. and Mathews, F.S. (1968) A semi-empiricalmethod of absorption correction. Acta Crystallographica, A24, 351359.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation, a quantitative measure of distortion in co-ordination polyhedra. Science, 172, 567570.CrossRefGoogle Scholar
Scheringer, C. (1972) A lattice dynamical treatment of the thermalmotion bond-length correction. Acta Crystallographica, A28, 616619.Google Scholar
Schneider, H. and Eberhard, E. (1990) Thermal expansion of mullite. Journal of the American Ceramic Society, 73, 20732076.CrossRefGoogle Scholar
Schwunck, H.-M., Moser, P. and Jung, W. (1998) The copper(II) oxide phosphate Cu4O(PO4)2 in a new, orthorhombic modification by oxidation of a Tl/Cu/P alloy. Zeitschrift für Anorganische und Allgemeine Chemie, 624, 12621266.3.0.CO;2-R>CrossRefGoogle Scholar
Sheldrick, G.M. (1998) SHELX97 – Programs for Crystal Structure Analysis (Release 97-2). Institut fü r Anorganische Chemie der Universität, Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2003) SADABS. University of Göttingen, Germany.Google Scholar
Xiao, F.-S., Sun, J., Meng, X., Yu, R., Yuan, H., Xu, J., Song, T., Jiang, D. and Xu, R. (2001) Synthesis and structure of copper hydroxyphospate and its high catalytic activity in hydroxylation of phenol by H2O2 . Journal of Catalysis, 199, 273281.CrossRefGoogle Scholar
Supplementary material: File

Zema et al. supplementary material

Structure factor data 1

Download Zema et al. supplementary material(File)
File 29.4 KB
Supplementary material: File

Zema et al. supplementary material

Structure factor data 2

Download Zema et al. supplementary material(File)
File 29.5 KB
Supplementary material: File

Zema et al. supplementary material

Structure factor data 3

Download Zema et al. supplementary material(File)
File 29.5 KB
Supplementary material: File

Zema et al. supplementary material

Structure factor data 4

Download Zema et al. supplementary material(File)
File 29.5 KB
Supplementary material: File

Zema et al. supplementary material

Structure factor data 5

Download Zema et al. supplementary material(File)
File 29.6 KB
Supplementary material: File

Zema et al. supplementary material

Structure factor data 6

Download Zema et al. supplementary material(File)
File 29.7 KB
Supplementary material: File

Zema et al. supplementary material

Structure factor data 7

Download Zema et al. supplementary material(File)
File 29.7 KB
Supplementary material: File

Zema et al. supplementary material

Structure factor data 8

Download Zema et al. supplementary material(File)
File 29.7 KB
Supplementary material: File

Zema et al. supplementary material

Structure factor data 9

Download Zema et al. supplementary material(File)
File 72.9 KB