Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T12:55:37.526Z Has data issue: false hasContentIssue false

Transmission electron microscopy study of the epitaxial association of hedenbergite whiskers with babingtonite

Published online by Cambridge University Press:  28 February 2018

Mariko Nagashima*
Affiliation:
Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
Daisuke Nishio-Hamane
Affiliation:
The Institute for Solid State Physics, the University of Tokyo, Kashiwa, Chiba 277-8581, Japan

Abstract

Overgrowths of whiskers of hedenbergite (Ca(Fe2+,Mg)Si2O6) on the hydrous pyroxenoid babingtonite (Ca2Fe2+Fe3+[Si5O14(OH)]) have been observed at Arvigo in Switzerland and Kreimbach/Kaulbach in Germany, and we have studied them with transmission electron microscopy in order to understand their structural relationships and formation. The boundaries between babingtonite and hedenbergite are sharply defined, and the two minerals are in direct contact with no additional phases present. The relationships of babingtonite (Bab) and hedenbergite (Hd) were determined as Bab[100]//Hd[112] in the Arvigo specimen and Bab[$\bar 1$00]//Hd[1$\bar 1$2] in the Kreimbach/Kaulbach specimen. Diffraction derived from Bab(031) and Hd(02$\bar 1$) in the Arvigo samples and Bab(031) and Hd(021) in the Kreimbach/Kaulbach samples were observed in identical positions. The reciprocity between the babingtonite and hedenbergite structures is governed by the direction of the SiO4-tetrahedral chains, and the related configuration of octahedra. Thus, hedenbergite is apparently an epitaxial phase grown on a base of {010} plates of babingtonite. The defined orientation relationship is also consistent with that shown in topotaxial intergrowths of other clinopyroxenes and pyroxenoids. The topotaxial intergrowths may result from diffusion-controlled solid-state reactions, whereas rapid whisker growth is characteristic of supersaturated solutions or a vapour medium. The epitaxial growth of hedenbergite whiskers on babingtonite with an abrupt but coherent change of structure at the interface represents an ideal example where the similar chemical compositions of host and guest contribute strongly to the close structural relationship.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony Kampf

References

Akasaka, M., Kimura, T. and Nagashima, M. (2013) Rietveld and 57Fe Mössbauer study of babingtonite from Shimane Peninsula, Japan. Journal of Mineralogical and Petrological Sciences, 108, 121130.CrossRefGoogle Scholar
Angel, R.J. (1986) Transformation mechanisms between single-chain silicates. American Mineralogist, 71, 14411454.Google Scholar
Araki, T. and Zoltai, T. (1972) Crystal structure of babingtonite. Zeitschrift für Kristallographie, 135, 355375.CrossRefGoogle Scholar
Armbruster, T. (2000) Cation distribution in Mg, Mn-bearing babingtonite from Arvigo, Val Calanca, Grisons, Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 80, 279284.Google Scholar
Armbruster, T., Stalder, H.A. and Gnos, E. (2000) Epitaxy of hedenbergite whiskers on babingtonite in Apline fissures at Arvigo, Val Calanca, Grisons, Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 80, 285290.Google Scholar
Armbruster, T., Gnos, E. and Richards, R.P. (2002) Epitactic hedenbergite whiskers on babingtonite, a second occurrence from a Triassic basalt at Lincoln Park near Paterson, New Jersey, USA. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 2532.Google Scholar
Birch, W.D. (1983) Babingtonite, fluorapophyllite and sphene from Harcourt, Victoria, Australia. Mineralogical Magazine, 43, 377380.CrossRefGoogle Scholar
Bonev, I.K., Reiche, M. and Marinov, M. (1985) Morphology, perfection and growth of natural pyrite whiskers and thin platelets. Physics and Chemistry of Minerals, 12, 223232.CrossRefGoogle Scholar
Bradley, J.P., Brownlee, D.E. and Veblen, D.R. (1983) Pyroxene whiskers and platelets in interplanetary dust: evidence of vapour phase growth. Nature, 301, 473477.CrossRefGoogle Scholar
Brugger, J., Krivovichev, S., Meisser, M., Ansermet, S. and Armbruster, T. (2006) Scheuchzerite, Na(Mn,Mg)9[VSi9O28(OH)](OH)3, a new single-chain silicate. American Mineralogist, 91, 937943.CrossRefGoogle Scholar
Bungert, R., Konrad, J. and Hofmeister, W. (1992) Babingtonit, Ca2Fe2+Fe3+[Si5O14OH], ein Neufund aus den hydrothermalen Alterationszonen der Saar-Nahe-Vulkanite. Aufschluss, 43, 297299 [in German].Google Scholar
Burns, G.R. and Dyar, M.D. (1991) Crystal chemistry and Mössbauer spectra of babingtonite. American Mineralogist, 76, 892899.Google Scholar
Burt, D.M. (1971) Multisystems analysis of the relative stabilities of babingtonite and ilvaite. Carnegie Institute Annual Report Geophysical Laboratory, 70, 189197.Google Scholar
Cameron, M., Sueno, S., Prewitt, C.T. and Papike, J.J. (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. American Mineralogist, 58, 594618.Google Scholar
Czank, M. (1981) Chain periodicity faults in babingtonite, Ca2Fe2+Fe3+H[Si5O15]. Acta Crystallographica, A37, 617620.CrossRefGoogle Scholar
Gole, M.J. (1981) Ca–Fe–Si skarns containing babingtonite: First known occurrence in Australia. Canadian Mineralogist, 19, 269277.Google Scholar
Graeser, S. and Stadler, H.A. (1976) Mineral-Neufunde aus der Schweiz und angrenzenden Gebieten II. Schweizer Strahler, 4, 158171 [in German].Google Scholar
Heidtke, U. (1986) Minerale eines Kluftsystems im Steinbruch von Kreimbach (Pfalz). Aufschluss, 37, 395405 [in German].Google Scholar
Hofmeister, W. and von Platen, H. (1990) Hydrothermale Mineralisationen in subvulkanischen basischen Lagergängen des Saar-Nahe-Gebietes. Mitteilungen der Pollichia, 77, 147153 [in German].Google Scholar
Liebau, F. (1985) Structural Chemistry of Silicates: Structure, Bonding, and Classification, Springer-Verlag, Berlin – Heidelberg.CrossRefGoogle Scholar
Livi, K.J. and Veblen, D.R. (1992) An analytical electron microscopy study of pyroxene–pyroxenoids reactions. American Mineralogist, 7, 380390.Google Scholar
Momma, K. and Izumi, F. (2011) VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Nagashima, M., Mitani, K. and Akasaka, M. (2014) Structural variation of babingtonite depending on cation distribution at the octahedral sites. Mineralogy and Petrology, 108, 287301.CrossRefGoogle Scholar
Narita, H., Koto, K. and Morimoto, N. (1977) The crystal structures of MnSiO3 polymorphs (rhodonite- and pyroxemangite-type). Mineralogical Journal, 8, 329342.CrossRefGoogle Scholar
Nelson, W.R. and Griffin, D.T. (2005) Crystal chemistry of Zn-rich rhodonite (“fowlerite”). American Mineralogist, 90, 969983.CrossRefGoogle Scholar
Nolan, J. (1969) Physical properties of synthetic and natural pyroxenes in the system diopside–hedenbergite–acmite. Mineralogical Magazine, 37, 216229.CrossRefGoogle Scholar
Pinckney, L.R. and Burnham, C.W. (1988) Effects of compositional variation on the crystal structures of pyroxemangite. American Mineralogist, 73, 798808.Google Scholar
Raade, G. and Erambert, M. (1999) An intergrowth of scandiobabingtonite and cascandite from the Heftetjern granite pegmatite, Norway. Neues Jahrbuch für Mineralogie Monatshefte, 1999, 545550.Google Scholar
Ried, H. (1984) Intergrowth of pyroxene and pyroxenoid; chain periodicity faults in pyroxene. Physics and Chemistry of Minerals, 10, 230235.CrossRefGoogle Scholar
Rutstein, M. and Yund, R.A. (1969) Unit-cell parameters of synthetic diopside–hedenbergite solid solutions. American Mineralogist, 54, 238245.Google Scholar
Takéuchi, Y. and Koto, K. (1977) A systematics of pyroxenoid structures. Mineralogical Journal, 8, 272285.CrossRefGoogle Scholar
Veblen, D.R. (1985) TEM study of a pyroxene-to-pyroxenoid reaction. American Mineralogist, 70, 885901.Google Scholar
Weisenberger, T. and Bucher, K. (2010) Zeolites in fissures of granites and gneisses of the Central Alps. Journal of Metamorphic Geology, 28, 825847.CrossRefGoogle Scholar
Weisenberger, T. and Bucher, K. (2011) Mass transfer and porosity evolution during low temperature water-rock interaction in gneisses of the simano nappe: Arvigo, Val Calanca, Swiss Alps. Contributions to Mineralogy and Petrology, 162, 6181.CrossRefGoogle Scholar
Wise, W.S. and Moller, W.P. (1990) Occurrence of Ca–Fe silicate minerals with zeolites in basalt cavities at Bombay, India. European Journal of Mineralogy, 2, 875883.CrossRefGoogle Scholar