Hostname: page-component-797576ffbb-jhnrh Total loading time: 0 Render date: 2023-12-02T11:51:52.446Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Nanodroplets Impacting on Graphene

Published online by Cambridge University Press:  23 March 2016

Ygor M. Jaques*
Affiliation:
Applied Physics Department, University of Campinas, Campinas, SP 13081-970, Brazil
Gustavo Brunetto
Affiliation:
Applied Physics Department, University of Campinas, Campinas, SP 13081-970, Brazil
Douglas S. Galvão
Affiliation:
Applied Physics Department, University of Campinas, Campinas, SP 13081-970, Brazil
*
Get access

Abstract

The unique and remarkable properties of graphene can be exploited as the basis to a wide range of applications. However, in spite of years of investigations there are some important graphene properties that are not still fully understood, as for example, its wettability. There are controversial reported results whether graphene is really hydrophobic or hydrophilic. In order to address this problem we have carried out classical molecular dynamics simulations of water nanodroplets shot against graphene surface. Our results show that the contact angle values between the nanodroplets and graphene surfaces depend on the initial droplet velocity value and these angles can change from 86° (hydrophobic) to 35° (hydrophilic). Our preliminary results indicate that the graphene wettability can be dependent on spreading liquid dynamics and which can explain some of the apparent inconsistencies reported in the literature.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Torrisi, F. and Coleman, J. N., Nature Nanotech. 9, 738 (2014).CrossRefGoogle Scholar
Liu, J., Nature Nanotech. 9, 739 (2014).CrossRefGoogle Scholar
Rao, C. N. R., Gopalakrishnan, K., and Maitra, U., ACS Appl. Mater. Interfaces 7, 7809 (2015).CrossRefGoogle Scholar
Ahn, J.-H. and Hong, B. H., Nature Nanotech. 9, 737 (2014).CrossRefGoogle Scholar
Blees, M. K., Barnard, A. W., Rose, P. a., Roberts, S. P., McGill, K. L., Huang, P. Y., Ruyack, A. R., Kevek, J. W., Kobrin, B., Muller, D. a., and McEuen, P. L., Nature 524, 204 (2015).CrossRefGoogle Scholar
Baringhaus, J., Ruan, M., Edler, F., Tejeda, A., Sicot, M., Taleb-Ibrahimi, A., Li, A.-P., Jiang, Z., Conrad, E. H., Berger, C., Tegenkamp, C., and de Heer, W. A., Nature 506, 349 (2014).CrossRefGoogle Scholar
Lee, J.-H., Loya, P. E., Lou, J., and Thomas, E. L., Science 346, 1092 (2014).CrossRefGoogle ScholarPubMed
Xin, G., Yao, T., Sun, H., Scott, S. M., Shao, D., Wang, G., and Lian, J., Science 349, 1083 (2015).CrossRefGoogle Scholar
Meng, F., Chen, C., and Song, J., J. Phys. Chem. Lett. 6, 4038 (2015).CrossRefGoogle Scholar
Herrera, C., García, G., Atilhan, M., and Aparicio, S., J. Phys. Chem. C 119, 24529 (2015).CrossRefGoogle Scholar
Li, X., Ren, H., Wu, W., Li, H., Wang, L., He, Y., Wang, J., and Zhou, Y., Sci. Rep. 5, 15190 (2015).CrossRefGoogle Scholar
Bong, J., Lim, T., Seo, K., Kwon, C.-A., Park, J. H., Kwak, S. K., and Ju, S., Sci. Rep. 5, 14321 (2015).CrossRefGoogle Scholar
Kozbial, A., Li, Z., Conaway, C., McGinley, R., Dhingra, S., Vahdat, V., Zhou, F., D’Urso, B., Liu, H., and Li, L., Langmuir 30, 8598 (2014).CrossRefGoogle Scholar
Li, Z., Wang, Y., Kozbial, A., Shenoy, G., Zhou, F., McGinley, R., Ireland, P., Morganstein, B., Kunkel, A., Surwade, S. P., Li, L., and Liu, H., Nature Mater. 12, 925 (2013).CrossRefGoogle Scholar
Ricardo, K. B., Sendecki, A., and Liu, H., Chem. Commun. 50, 2751 (2014).CrossRefGoogle Scholar
Rafiee, J., Mi, X., Gullapalli, H., Thomas, A. V., Yavari, F., Shi, Y., Ajayan, P. M., and Koratkar, N. a., Nature Mater. 11, 217 (2012).CrossRefGoogle Scholar
Kozbial, A., Li, Z., Sun, J., Gong, X., Zhou, F., Wang, Y., Xu, H., Liu, H., and Li, L., Carbon 74, 218 (2014).CrossRefGoogle Scholar
Werder, T., Walther, J. H., Jaffe, R. L., Halicioglu, T., Noca, F., and Koumoutsakos, P., Nano Letters 1, 697 (2001).CrossRefGoogle Scholar
Wang, S., Zhang, Y., Abidi, N., and Cabrales, L., Langmuir 25, 11078 (2009).CrossRefGoogle ScholarPubMed
Editorial, Nature Mater. 12, 865 (2013).CrossRefGoogle Scholar
Plimpton, S., J. Comp. Phys. 117, 1 (1995). http://lammps.sandia.gov/.CrossRefGoogle Scholar
Pollock, E. L. and Glosli, J., Comp. Phys. Commun. 95, 93 (1996).CrossRefGoogle Scholar
Aksyonov, S. A. and Williams, P., Rapid Commun. in Mass Spectrometry 15, 2001 (2001).CrossRefGoogle ScholarPubMed
Koplik, J., Phys. of Fluids 27, 082001 (2015).CrossRefGoogle Scholar
Li, X. H., Zhang, X. X., and Chen, M., Phys. of Fluids 27, 052007 (2015).CrossRefGoogle Scholar
Sun, S. N. and Urbassek, H. M., Phys. Rev. E 84, 056315 (2011).CrossRefGoogle Scholar
Sun, S. N. and Urbassek, H. M., Soft Matter 8, 4708 (2012).CrossRefGoogle Scholar
Koplik, J. and Zhang, R., Phys. of Fluids 25, 022003 (2013).CrossRefGoogle Scholar
Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P., J. Phys. Chem. 91, 6269 (1987).CrossRefGoogle Scholar
Jaffe, R. L., Gonnet, P., Werder, T., Walther, J. H., and Koumoutsakos, P., Mol. Simul. 30, 205 (2004).CrossRefGoogle Scholar