Hostname: page-component-797576ffbb-jhnrh Total loading time: 0 Render date: 2023-12-02T08:17:05.663Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Role of the Shuttleworth effect in adhesion on elastic surfaces

Published online by Cambridge University Press:  22 March 2016

Shayandev Sinha
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
Siddhartha Das*
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
*
*E-mail: sidd@umd.edu
Get access

Abstract

The Shuttleworth effect ensures that at an interface, where one of the phases is an elastic solid, surface stress is not equal to the surface energy. In this paper, we provide a free energy based approach to quantify the impact of the Shuttleworth effect in the adhesion of a rigid, spherical particle on an elastic solid. Our paper has four key findings. Firstly, we demonstrate that the difference in the elastic-solid-particle surface stress and surface energies is linearly proportional to the adhesion energy. Secondly, we establish that the surface stresses being larger than the surface energies provide the sufficient condition for an energetically favorable adhesion. Thirdly, we show that for a given adhesion energy and solid-vapor surface energy increase in particle-vapor surface energy makes the adhesion, in presence of the Shuttleworth effect, more favorable. Finally, and most importantly, we identify the necessary parameter space corresponding to which the Shuttleworth effect may or may not enhance the adhesion as compared to the case that does not account for the Shuttleworth effect. We anticipate that our findings will significantly impact our understanding of a plethora of problems involving adhesion and indentation on soft surfaces, such as nanoparticle adhesion on cells, nanoindentation based characterization of soft solids, applications of adhesion-based soft lithography techniques, etc.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bico, J.; Roman, B. Elasto-capillarity: deforming an elastic structure with a liquid droplet J. Phys. Cond. Matt. 22, 493101. (2010)Google Scholar
Das, S.; Marchand, A.; Andreotti, B.; Snoeijer, J. H. Elastic deformation due to tangential capillary forces. Phys. Fluid. 23, 072006. (2011)CrossRefGoogle Scholar
Marchand, A.; Das, S., Snoeijer, J. H.; Andreotti, B. Capillary pressure and contact line force on a soft solid. Phys. Rev. Lett. 108, 094301. (2012)CrossRefGoogle ScholarPubMed
Marchand, A.; Das, S., Snoeijer, J. H.; Andreotti, B. Contact angles on a soft solid: From Young’s law to Neumann’s law. Phys. Rev. Lett. 109, 236101. (2012)CrossRefGoogle ScholarPubMed
Chakrabarti, A.; Chaudhury, M. K. Direct measurement of the surface tension of a soft elastic hydrogel: Exploration of elastocapillary instability in adhesion. Langmuir 29, 6926. (2013)CrossRefGoogle ScholarPubMed
Jerison, E. R.; Xu, Y.; Wilen, L. A.; Dufresne, E. R. Deformation of an elastic substrate by a three-phase contact line. Phys. Rev. Lett. 106, 186103. (2011)CrossRefGoogle ScholarPubMed
Style, R. W.; Boltyanskiy, R.; Che, Y.; Wettlaufer, J. S.; Wilen, L. A.; Dufresne, E. R. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys. Rev. Lett. 110, 066103. (2013)CrossRefGoogle Scholar
Pericet-Camara, R.; Best, A.; Butt, H-J.; Bonaccurso, E. Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: An experimental investigation. Langmuir 24, 10565. (2008)CrossRefGoogle Scholar
Style, R. W.; Hyland, C.; Boltyanskiy, R.; Wettlaufer, J. S.; Dufresne, E. R. Surface tension and contact with soft elastic solids. Nat. Commun. 4, 2778. (2013)CrossRefGoogle ScholarPubMed
Bhushan, B. Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction. J. Vac. Sci. Tech. 21, 1071. (2003)CrossRefGoogle Scholar
Waghmare, P. R.; Das, S.; Mitra, S. K. Drop deposition on under-liquid low energy surfaces. Soft Matt. 9, 7437. (2013)CrossRefGoogle Scholar
Orellana, C. S.; Jaeger, H. M. The role of surface tension in magnetorheological adhesion. Soft Matt. 9, 8519. (2013)CrossRefGoogle Scholar
De Volder, M.; Hart, A. J.; Engineering hierarchical nanostructures by elastocapillary self-assembly. Angew. Chem. Int. Ed. 52, 2412. (2013)CrossRefGoogle ScholarPubMed
Tawfick, S.; Zhao, Z.; Maschmann, M.; Brieland-Shoultz, A.; De Volder, M.; Baur, J. W.; Lu, W.; Hart, A. J. Mechanics of capillary forming of aligned carbon nanotube assemblies. Langmuir 29, 5190. (2013)CrossRefGoogle ScholarPubMed
Style, R. W.; Che, Y.; Park, S. J.; Weon, B. M.; Je, J. H.; Hyland, C.; German, G. K.; Power, M. P.; Wilen, L. A.; Wettlaufer, J. S.; Dufresne, E. R. Patterning droplets with durotaxis. Proc. Nat. Acad. Sci. USA 110, 12541. (2013)CrossRefGoogle ScholarPubMed
Douezan, S.; Dumond, J.; and Brochard-Wyart, F. Wetting transitions of cellular aggregates induced by substrate rigidity. Soft Matt. 8, 4578. (2012)CrossRefGoogle Scholar
Chaudhury, M. K.; Chakrabarti, A.; Daniel, S. Generation of motion of drops with interfacial contact. Langmuir, DOI: 10.1021/la504925u. (2015)CrossRefGoogle ScholarPubMed
Chakrabarti, A.; Chaudhury, M. K. Elastocapillary interaction of particles on the surfaces of ultrasoft gels: A novel route to study self-assembly and soft lubrication. Langmuir 30, 4684. (2014)CrossRefGoogle ScholarPubMed
Weijs, J. H.; Snoeijer, J. H.; Andreotti, B. Capillarity of soft amorphous solids: A microscopic model for surface stress. Phys. Rev. E. 89, 042408. (2014)CrossRefGoogle ScholarPubMed
Weijs, J. H.; Snoeijer, J. H.; Andreotti, B. Elasto-capillarity at the nanoscale: on the coupling between elasticity and surface energy in soft solids. Soft Matt. 9, 8494. (2013)CrossRefGoogle Scholar
Shuttleworth, R. The surface tension of solids. Proc. Roy. Soc., London Sect. A 63, 444. (1950)CrossRefGoogle Scholar
De Jong, W. H.; Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 8, 3406. (2008)Google Scholar
Harush-Frenkel, O.; Altschuler, Y.; Benita, S. Nanoparticle-cell interactions: drug delivery implications. Crit. Rev. Ther. Drug Carr. Sys. 25, 485. (2008)CrossRefGoogle ScholarPubMed
Lin, D. C.; Dimitriadis, E. K.; Horkay, F. Advances in the mechanical characterization of soft materials by nanoindentation. Recent Res. Dev. Biophys. 5, 333. (2006)Google Scholar
Poon, B.; Rittel, D.; Ravichandran, G. An analysis of nanoindentation in linearly elastic solids. Int. J. Solid Struc. 45, 6018. (2008)CrossRefGoogle Scholar
Poon, B.; Rittel, D.; Ravichandran, G. An analysis of nanoindentation in elasto-plastic solids. Int. J. Solid Struc. 45, 6399. (2008)CrossRefGoogle Scholar
Chen, K-L.; Cao, Y-P.; Zhang, M-G.; Feng, X-Q. Indentation-triggered pattern transformation in hyperelastic soft cellular solids. C. R. Mecanique 342, 292. (2014)CrossRefGoogle Scholar
Mukherjee, R.; Sharma, A.; Gonuguntla, M.; Patil, G. K. Adhesive force assisted imprinting of soft solid polymer films by flexible foils. J. Nanosci. Nanotechnol. 8, 3406. (2008)CrossRefGoogle ScholarPubMed
Karpitschka, S.; Das, S.; van Gorcum, M.; Perrin, H.; Andreotti, B.; Snoeijer, J. H. Droplets move over viscoelastic substrates by surfing a ridge. Nat. Commun. (Accepted for Publication).Google Scholar
Lubbers, L. A.; Weijs, J. H.; Botto, L.; Das, S.; Andreotti, B.; and Snoeijer, J. H. Drops on soft solids: free energy and double transition of contact angles. J. Fluid Mech. 747, R1. (2014)CrossRefGoogle Scholar
Hui, C-Y.; Jagota, A. Deformation near a liquid contact line on an elastic substrate. Proc. Roy. Soc. A 470, 20140085. (2014)CrossRefGoogle Scholar
Nadermann, N.; Hui, C.-Y.; and Jagota, A. Solid surface tension measured by a liquid drop under a solid film. Proc. Natl. Acad. Sci. USA 110, 10541. (2013)CrossRefGoogle Scholar
Hui, C-Y.; Liu, T.; Salez, T.; Raphael, E.; Jagota, A. Indentation of a rigid sphere into an elastic substrate with surface tension and adhesion. Proc. Roy. Soc. A 471, 20140727. (2015)CrossRefGoogle ScholarPubMed
Xu, X.; Jagota, A.; Hui, C-Y. Effects of surface tension on the adhesive contact of a rigid sphere to a compliant substrate. Soft Matt. 10, 4625. (2014)CrossRefGoogle ScholarPubMed
Liu, T.; Jagota, A.; Hui, C-Y. Adhesive contact of a rigid circular cylinder to a soft elastic substrate – the role of surface tension. Soft Matt. 11, 3844. (2015)CrossRefGoogle ScholarPubMed
Garrett, T. G.; Bhakoo, M.; Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 18, 1049 (2008).CrossRefGoogle Scholar
Kirschner, C. M.; Brennan, A. B. Bio-inspired antifouling strategies. Ann. Rev. Mater. Res. 42, 211 (2012).CrossRefGoogle Scholar