Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T02:00:42.396Z Has data issue: false hasContentIssue false

Controllable Synthesis of Cobalt Porphyrin Nanocrystals through Micelle Confinement Self-Assembly

Published online by Cambridge University Press:  10 June 2020

Sudi Chen
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng475004, China
Xitong Ren
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng475004, China
Shufang Tian*
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng475004, China
Jiajie Sun*
Affiliation:
School of Physics and Electronics, Henan University, Kaifeng475004, China
Feng Bai*
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng475004, China
Get access

Abstract

The self-assembly of optically active building blocks into functional nanocrystals as high-activity photocatalysts is a key in the field of photocatalysis. Cobalt porphyrin with abundant catalytic properties is extensively studied in photocatalytic water oxidation and CO2 reduction. Here, we present the fabrication of cobalt porphyrin nanocrystals through a surfactant-assisted interfacial self-assembly process using Co-tetra(4-pyridyl) porphyrin as building block. The self-assembly process relies on the combined noncovalent interactions such as π-π stacking and axial Co-N coordination between individual porphyrin molecules within surfactant micelles. Tuning different reaction conditions (temperature, the ratio of co-solvent DMF) and types of surfactant, various nanocrystals with well-defined 1D to 3D morphologies such as nanowires, nanorods and nano hexagonal prism were obtained. Due to the ordered accumulation of molecules, the nanocrystals exhibit the properties of the enhanced capability of visible light capture and can conduce to improve the transport and separation efficiency of the photogenerated carriers, which is important for photocatalysis. Further studies of photocatalytic CO2 reduction are being performed to address the relationship between the size and shape of the nanocrystals with the photocatalytic activity.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Polshettiwar, V., Varma, R. S., Green Chem. 12, 743 (2010).CrossRefGoogle Scholar
Meyers, M. A., Mishra, A., Benson, D. J., Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
Gleiter, H., Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
Lin, S., Diercks, C. S., Zhang, Y.-B., Kornienko, N., Nichols, E. M., Zhao, Y., Paris, A. R., Kim, D., Yang, P., Yaghi, O. M., Chang, C. J., Science 349, 1208 (2015).Google Scholar
Wang, Z., Lybarger, L. E., Wang, W., Medforth, C. J., Miller, J. E., Shelnutt, J. A., Nanotechnology 19, 395604 (2008).Google Scholar
Bai, F., Sun, Z., Wu, H., Haddad, R. E., Coker, E. N., Huang, J. Y., Rodriguez, M. A., Fan, H., Nano Lett. 11, 5196 (2011).Google Scholar
Zhong, Y., Wang, Z., Zhang, R., Bai, F., Wu, H., Haddad, R., Fan, H., ACS Nano 8, 827 (2014).Google Scholar
Wang, Z. C., Medforth, C. J., Shelnutt, J. A., J. Am. Chem. Soc. 126, 15954 (2004).Google Scholar
Zhi, L. J., Gorelik, T., Wu, J. S., Kolb, U., Mullen, K., J. Am. Chem. Soc. 127, 12792 (2005).Google Scholar
Hu, J. S., Guo, Y. G., Liang, H. P., Wan, L. J., L. J. Am. Chem. Soc. 127, 17090 (2005).Google Scholar
Gong, X. C., Milic, T., Xu, C., Batteas, J. D., Drain, C. M., J. Am. Chem. Soc. 124, 14290 (2002).CrossRefGoogle Scholar
Wei, W.,; Bai, F.,; Fan, H., Angew. Chem., Int. Ed. 58, 11956 (2019).Google Scholar
Zhang, N., Wang, L., Wang, H., Cao, R., Wang, J., Bai, F., Fan, H., Nano Lett. 18, 560 (2018).Google Scholar
Zhong, Y., Wang, J., Zhang, R., Wei, W., Wang, H., Lu, X., Bai, F., Wu, H., Haddad, R., Fan, H., Nano Lett. 14, 7175 (2014).CrossRefGoogle Scholar
Bai, F., Sun, Z., Wu, H., Haddad, R. E., Xiao, X., Fan, H., Nano Lett. 11, 3759 (2011).Google Scholar
Zhong, Y., Wang, J., Tian, Y., MRS Bull. 44, 183 (2019).CrossRefGoogle Scholar
Wang, J., Zhong, Y., Wang, L., Zhan, N., Cao, R., Bian, K., Alarid, L., Haddad, R. E., Bai, F., Fan, H., Nano Lett. 16, 6523 (2016).Google Scholar
Liu, L. J., Lai, Y. D., Li, H. H., Kang, L. T., Liu, J. J., Cao, Z. M., Yao, J. N., J. Mater. Chem. A 5, 8029 (2017).Google Scholar
Wei, W., Bai, F., Fan, H., iScience 11, 272 (2019).CrossRefGoogle Scholar
Wang, D., Niu, L., Qiao, Z.-Y., Cheng, D.-B., Wang, J., Zhong, Y., Bai, F., Wang, H., Fan, H., ACS Nano 12, 3796 (2018).Google Scholar
Liu, Y., Wang, L., Feng, H., Ren, X., Ji, J., Bai, F., Fan, H., Nano Lett. 19, 2614 (2019).Google Scholar
Sadeghi, N., Sharifnia, S., Arabi, M. S., J. CO2 Util. 16, 450 (2016).CrossRefGoogle Scholar
Li, R., Zhang, W., Zhou, K., Adv. Mater. 30, 1705512 (2018).Google Scholar
Han, B., Ou, X., Deng, Z., Song, Y., Tian, C., Deng, H., Xu, Y.-J., Lin, Z., Angew. Chem., Int. Ed. 57, 16811 (2018).Google Scholar
Yoon, S. M., Hwang, I.-C., Kim, K. S., Choi, H. C., Angew. Chem., Int. Ed. 48, 2506 (2009).Google Scholar
Oldacre, A. N., Friedman, A. E., Cook, T. R., J. Am. Chem. Soc. 139, 1424 (2017).CrossRefGoogle Scholar
Yella, A., Lee, H.-W., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., Diau, E. W.-G., Yeh, C.-Y., Zakeeruddin, S. M., Graetzel, M., Science 334, 629 (2011).CrossRefGoogle Scholar
Zhang, H., Wei, J., Dong, J., Liu, G., Shi, L., An, P., Zhao, G., Kong, J., Wang, X., Meng, X., Zhang, J., Ye, J., Angew. Chem., Int. Ed. 55, 14308 (2016).Google Scholar
Kornienko, N., Zhao, Y., Kiley, C. S., Zhu, C., Kim, D., Lin, S., Chang, C. J., Yaghi, O. M., Yang, P., J. Am. Chem. Soc. 137, 14129 (2015).Google Scholar
Supplementary material: File

Chen et al. supplementary material

Chen et al. supplementary material

Download Chen et al. supplementary material(File)
File 1.7 MB