Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T08:37:27.558Z Has data issue: false hasContentIssue false

Density Functional Theory study of Cu doped {0001} and {01${{\rm{\bar{1}}}}$2} surfaces of hematite for water splitting

Published online by Cambridge University Press:  01 March 2018

Joseph Simfukwe*
Affiliation:
Department of Physics, University of Pretoria, Pretoria0002, South Africa Department of Physics, Copperbelt University, Riverside, Kitwe10101, Zambia
Refilwe Edwin Mapasha
Affiliation:
Department of Physics, University of Pretoria, Pretoria0002, South Africa
Artur Braun
Affiliation:
Laboratory for High Performance Ceramics. Empa. Swiss Federal Laboratories for Materials Science and Technology, CH -8600 Dübendorf, Switzerland
Mmantsae Diale
Affiliation:
Department of Physics, University of Pretoria, Pretoria0002, South Africa

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Density Functional Theory (DFT) calculations study of Cu doped {0001} and {01-12} surfaces of hematite for enhanced water splitting have been carried out. The doping was restricted to planes in the vicinity of the surface, specifically from the top most layers to the third inner layer of Fe atoms. Thermodynamic stabilities were evaluated based on surface energies and formation energies. The evaluation of thermodynamic stabilities (negative formation energy values) shows that the systems are thermodynamically stable which suggest that they can be synthesized in the laboratory under favorable conditions. Doping on the top most layer yields the energetically most favorable structure. The calculated charge density difference plots showed the concentration of charge mainly at the top of the surface (termination region), and this charge depleted from the Cu atom to the surrounding Fe and O atoms. This phenomenon (concentration of charge at the top of the surface) is likely to reduce the distance moved by the charge carriers, decrease in charge recombination leading to facile transfer of charge to the adsorbate and, suggesting improved photoelectrochemical water oxidation activity of hematite. The analysis of electron electronic structure reveals that Cu doped surface systems does not only decrease the band gap but also leads to the correct conduction band alignment for direct water splitting without external bias voltage.

Type
Articles
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Materials Research Society 2018

References

REFERENCES:

Hu, Y-S., leiman-Shwarsctein, A. K, Forman, A. J., Hazen, D., Park, J-N and McFarland, E. W., Chem. Matter, 20, 3803 (2008)Google Scholar
Barroso, M., Pendlerbury, S. R., Cowan, A. J. and Durrant, J. R., Chem. Sci., 4, 2724 (2013)Google Scholar
Pan, H. J., Meng, X. Y. and Qin, G. W., Phys. Chem. Chem. Phys, 16, 25442 (2014).Google Scholar
Glasscock, J. A., Barnes, P. R. F., Plumb, I. C. and Savvides, N., J. Phys. Chem. C, 111, 1647716488 (2007).Google Scholar
Pan, H., Meng, X., Liu, D., Li, S. and Qin, G., Phys.Chem. Chem. Phys., 17, 22179 (2015).Google Scholar
Mirbagheri, N., Wang, D., Peng, C., Wang, J., Huang, Q., Fan, C. and Ferapontova, E. E., ACS Catalysis, 4, 20062015 (2014).Google Scholar
Wang, J. J., Hu, Y., Toth, R., Fortunato, G., Braun, A., A facile nonpolar organic solution process of nanostructured hematite photoanode with efficiency and stability for splitting, J. Matter Chem A, 4, 28212825 (2016).Google Scholar
Boudoire, F., Toth, R., Heier, J., Braun, A., Constable, E. C., Photonic light trapping in self-organized all-oxide microspheroids impacts on photoelectrochemical water splitting, Energy & Environmental Science, 7, 26802688 (2014).CrossRefGoogle Scholar
Cherepy, N. J., Liston, D. B., Lovejoy, J. A., Deng, H. M. and Zhang, J. Z., J. Phys. Chem. B, 102, 770-776 (1998).Google Scholar
Hu, Y., Boudoire, F., Hermann-Geppert, I., Bogdanoff, P, Tsekouras, G., Mun, B.S., Fortunato, G., Graetzel, M., Braun, A., Molecular Origin and Electrochemical Influence of Capacitance Surfaces States on Iron Oxide Photoanodes: The Journal of Physical Chemistry C, 120, 32503258 (2016).Google Scholar
Meng, X. Y., Qin, G. W., Li, S., Wen, X. H., Ren, Y. P., Pei, W. L. and Zuo, L., Applied Physics Letters, 98, 112104 (2011).Google Scholar
Franking, R., Li, L. S., Lukowski, M. A., Meng, F., Tan, Y. Z., Hamers, R. J. and Jin, S., Energy Environ. Sci, 6, 500512 (2013).Google Scholar
Zhou, Z., Huo, P., Guo, L. and Prezhdo, O. V., J. Phy. Chem. C, 119, 2630326310 (2015).Google Scholar
Kumari, S., Singh, A. P., Tripathi, C., Chauhan, D., Dass, S., Shrivastav, R., Gupta, V., Screenivas, K. and Satsangi, V. R., Int. J. Photoenergy, 87467 (2007).Google Scholar
Chang, S. and Liu, W., Applied Catalysis B: Environmental, 101, 333-342 (2011).Google Scholar
Nagaveni, K., Hegde, M. S. and Madras, G., J. Phys Chem. B, 108, 2020420212 (2004).CrossRefGoogle Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.I., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, I., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, I., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
Hohenberg, P. and Kohn, W., Phys. Rev, 136, B864 (1964)Google Scholar
Kohn, W. and Sham, L. J., Phys. Rev, 140, A1133 (1965).Google Scholar
Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett, 77, 3865 (1996).CrossRefGoogle Scholar
Liechtenstein, A. I., Anisimov, V. I. and Zaanen, J., Phys. Rev. B 52, R5467 (1995).CrossRefGoogle Scholar
Dudarev, S. L., Liechtenstein, A. I., Castell, M. R., Briggs, G. A. D. and Sutton, A. P., Phys. Rev. B 56, 4900 (1997).Google Scholar
Dudarev, S. L., Botton, G. A., Savrasov, S.Y., Humphreys, C. J. and Sutton, A. P., Phys. Rev. B 57, 1505 (1998).Google Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
Zhou, Z., Shi, J. and Guo, L., Computational Materials Science, 113, 117122 (2016).Google Scholar
Catti, M., Valerio, G. and Dovesi, R., Phys. Rev. B 51, 74417450 (1995).Google Scholar
Liao, L. P. and Carter, E. A., J. Phy. Chem. C, 13, 1518915199 (2011).Google Scholar
Rohrbach, A., Hafner, J. and Kresse, G., Phys. Rev. B 70, 125426 (2004).Google Scholar
Garg, P., Kumar, S., Choudhuri, I., Mahata, A. and Pathak, B., J. Phys. Chem. C, 120, 70527060 (2016).Google Scholar
Dzade, N. Y., Roldan, A. and De Leeuw, N. H., Minerals, 4, 89115 (2014).Google Scholar
De Leeuw, N. H. and Cooper, T. G., Geochim. Cosmochin. Acta, 71, 16551673 (2007).Google Scholar
Mackrodt, W. C., Phys. Chem. Miner. 15, 228237 (1988).Google Scholar
Reeves, N. J. and Mann, S., J. Chem. Soc. Faraday Trans. 87, 38753880 (1991).Google Scholar
Wang, J., Sun, H., Huang, J., Li, Q. and Yang, J., J. Phys. Chem. C, 118, 74517457 (2014).Google Scholar