Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T03:12:53.327Z Has data issue: false hasContentIssue false

Deposition of Cobalt Doped Zinc Oxide Thin Film Nano-Composites Via Pulsed Electron Beam Ablation

Published online by Cambridge University Press:  19 January 2016

Asghar Ali*
Affiliation:
Bharti School of Engineering, Laurentian University, Sudbury, ON. Canada
Patrick Morrow
Affiliation:
Department of Physics, University of Guelph ON. Canada
Redhouane Henda
Affiliation:
Bharti School of Engineering, Laurentian University, Sudbury, ON. Canada
Ragnar Fagerberg
Affiliation:
SINTEF Materials and Chemistry, department of materials and nano technology, Trondheim, Norway
*
Get access

Abstract

This study reports on the preparation of cobalt doped zinc oxide (Co:ZnO) films via pulsed electron beam ablation (PEBA) from a single target containing 20 w% Co on sapphire (0001) and silicon (100) substrates. The films have been deposited at various temperatures (350оC, 400оC, 450оC) and pulse frequencies (2 Hz, 4 Hz), under a background argon (Ar) pressure of about 3 mtorr, and an accelerating voltage of 14 kV. The surface morphology has been examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). According to SEM analysis, the films consist of nano-globules whose size is in the range of 80-178 nm. Energy dispersive x-ray spectroscopy (EDX) reveals that deposition is congruent and the prepared films contain ∼20±5 w% cobalt. It has been found that the nano-globules in the deposited films are cobalt-rich zones containing ∼70 w% Co. From x-ray photoelectron spectroscopy (XPS) analysis, Co 2p3/2 peaks indicate that the deposited films contain CoO (binding energy = 780.5 eV) as well as metallic Co (binding energy = 778.1-778.5 eV). X-ray diffraction (XRD) analysis supports the presence of metallic Co hcp phase (2ϴ = 44.47° and 47.43°) in the films.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, X, Ning., W, Hu, L. and Li, Y., Catalysis Communications 24, 61(2012).Google Scholar
Poongodi, G., Anandan, P., Kumar, R. M and Jayavel, R., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 148, 237 (2015).Google Scholar
Llorca, J., Homs, N. and de la Piscina, P.R., Journal of Catalysis 227, 556 (2004).CrossRefGoogle Scholar
Ueda, K., Tabata, H., and Kawaj, T., Applied Physics Letters 79, 988 (2001).Google Scholar
Tuan, A.C., Bryan, J.D., Pakhomov, A.B., Shutthanandan., V., Thevuthasan., S., McCready, D.E., Gaspar, D., Engelhard, M.H., Rogers, J.W. Jr, Krishnan, K., Gamelin, D.R., and Chambers, S.A., Physical Review B 70, 054424 (2004).CrossRefGoogle Scholar
Sati, P., Schafer, S., Morhain, C., Deparis, C., and Stepanov, A., Superlattices and Microstructures 42, 191(2007).Google Scholar
Song, C., Pan, S.N., Liu, X.J., Li, X.W., Zeng, F., Yan, W.S., He, B. and Pan, F., J. Phys.: Condens. Matter 19, 176229 (2007).Google Scholar
Belghazi, Y., AitAouaj, M., Yadari, M.E., Schmerber, G., Bouille, C.U., Leuvrey, C., Colis, S., Abd-lefdil, M., Berrada, A. and Dinia, A., Microelectronics Journal 40, 265 (2009).Google Scholar
Manouni, A.E., Tortosa, M., Manjon, F.J., Mollar, M., Mari, B. and S-Royo, J.F., Microelectronics Journal 40, 268 (2009).Google Scholar
Lee, H-J., Jeong, S-E, Cho, C.R. and Park, C.H., Appl. Phys. Lett. 81, 4020 (2002).Google Scholar
Harshavardhan, K.S. and Strikovski, M., Second-Generation HTS Conductors, ed. Goyal, A. (Springer, New York, 2005), p. 109.Google Scholar
Mathis, J.E., and Christen, H.M., 2007, Physica C 459, 47 (2007).Google Scholar
Ohring, M., The materials science of thin films: deposition and structure, 2nd ed. (Academic Press, 1992). pp. 195218.Google Scholar
Liu, G.X., Shan, F.K., Lee, W.J., Shin, B.C., Shin, H.S., Kim, H.S., Kim, J.K., Ceramics International 34, 1015(2008).Google Scholar
Ivill, M., Peartonm, S.J., Rawal, S., Leu, L., Sadik, P., Das, R., Hebard, A.F., Chisholm, M., Budai, J.D. and Norton, D.P., New Journal of Physics10, 065002(2008).Google Scholar
Sakuma, H., Watanabe, Y., Aramaki, K., Yun, K.S., Ishii, K., Ikeda, Y. and Kondo, H. Materials Science and Engineering B 173, 7(2010).Google Scholar
(Rob) Hui, S., Wu, M., Ge, S., Yan, D., Zhang, Y.D., Xiao, T.D., Yacaman, M. J., Miki-Yoshida, M. , Hines, W. A. and Budnick, J. I., Mat. Res. Soc. Symp. Proc. 755, DD5.20.1 (2003).Google Scholar