Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T08:41:37.194Z Has data issue: false hasContentIssue false

DFT Path Towards the Characterization of the SnO2-CH4 Gas Sensing Reactions

Published online by Cambridge University Press:  22 January 2018

G. Carbajal-Franco*
Affiliation:
Division of Graduate Studies and Research, Instituto Tecnológico de Toluca, TecNM-SEP, Avenida Tecnológico, s/n, Colonia Agrícola Buenavista, Metepec, 52149, México
M. F. Márquez-Quintana
Affiliation:
Department of Chemistry and Biochemistry, Instituto Tecnológico de Toluca, TecNM-SEP, Avenida Tecnológico, s/n, Colonia Agrícola Buenavista, Metepec, 52149, México
Get access

Abstract

Gas detecting and sensing is a largely studied field of knowledge, but total understanding is not yet achieved and the ideal device is still far in the future. Many experimental efforts have been devoted to find the minimum optimal temperature and operational conditions for SnO2 to sense hydrocarbons; different methods to build gas-detecting devices keep being developed all around the world, from paste-based bulk devices to nanostructured thick and thin films, but little effort has been aim to characterize the reactions by calculating their related enthalpies. Computational methods have been widely used to characterize, understand and model many physicochemical interactions. In this regard, three main courses can be followed: Ab initio (first principles of quantum mechanics), DFT (Density Functional Theory) and MD (Molecular Dynamics) simulation. In this research, DFT modelling tool is employed to understand and characterize the gas-sensing reactions of Tin Oxide when exposed to an atmosphere with Methane. In CASTEP, a robust DFT module of the Materials Studio suite, one SnO2 (110) crystal plane is exposed to CH4 and the structure is optimized many times for each possible step of the reaction, recording the energies related with each optimization stage, in sum giving us the Transition State (TS) of the reaction. Based on the data, a promising reaction-path is proposed and analyzed for the (110) surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Morrison, S.. Sensors and Actuators, 2, 329 (1982).Google Scholar
Yamazoe, N., Sakai, G., Shimanoe, K.. Catalysis Surveys from Asia. 7(1), 66 (2003).CrossRefGoogle Scholar
Carbajal-Franco, G., Tiburcio-Silver, A., Domíınguez, J.M., Sánchez-Juárez, A.. Thin Solid Films 373, 141 (2000).Google Scholar
Barsan, N., Weimar, U.. J. Electroceramics. 7, 143 (2001).Google Scholar
Suematsu, K.., Yuasa, M., Kida, T., Yamazoe, N., Shimanoe, K.. Journal of The Electrochemical Society, 161(6), B123 (2014).Google Scholar
Ma, N., Suematsu, K., Yuasa, M., Kida, T., Shimanoe, K.. ACS Appl. Mater. Interfaces. 7(10), 5863 (2015).Google Scholar
Lyson-Sypien, B., Kusior, A., Rekas, M., Zukrowski, J., Gajewska, M., Michalow-Mauke, K., Graule, T., Radecka, M., Zakrzewska, K.. Beilstein J. Nanotechnol. 8, 108 (2017).Google Scholar
Wang, X., Qin, H., Chen, Y., Hu, J.. J. Phys. Chem. C. 118(49), 28548 (2014).Google Scholar
Janotti, A., Varley, J.B., Lyons, J.L., Van de Walle, C.G., in Functional Metal Oxide Nanostructures, edited by Wu, J. et al. (Springer Series in Materials Science 149).Google Scholar
Meier, C., Lüttjohann, S., Kravets, V. G., Nienhaus, H., Lorke, A., Ifeacho, P., Wiggers, H., Schulz, C., Kennedy, M. K., Kruis, E.. J. Appl. Phys. 99, 113108 (2006).Google Scholar
Seko, A., Togo, A., Oba, F., Tanaka, I.. Phys. Rev. Lett. 100, 045702 (2008).Google Scholar
Berengue, O. M., Simon, R. A., Chiquito, A. J., Dalmaschio, C. J., Leite, E. R., Guerreiro, H. A., Guimarães, F. E. G.. J. Appl. Phys. 107, 033717 (2010).CrossRefGoogle Scholar
Aldao, C. M., Mirabella, D. A., Ponce, M. A., Giberti, A., Malagù, C.. J. Appl. Phys. 109, 063723 (2011).Google Scholar
Aldao, C.M., Schipani, F., Ponce, M.A., Joanni, E., Williams, F.J.. Sensors and Actuators B 193, 428 (2014).Google Scholar
Schipani, F., Ponce, M. A., Joanni, E., Williams, F. J., Aldao, C. M.. J. Appl. Phys. 116, 194502 (2014)Google Scholar
Desimone, P. M., Díaz, C. G., Tomba, J. P., Aldao, C. M., Ponce, M. A.. J. Mater. Sci. 51, 4451 (2016).Google Scholar
Mason, J. A., Oktawiec, J., Taylor, M. K., Hudson, M. R., Rodriguez, J, Bachman, J. E., Gonzalez, M. I., Cervellino, A., Guagliardi, A., Brown, C. M., Llewellyn, P. L., Masciocchi, N. Long, J. R.. Nature. 527, 357 (2015).Google Scholar
Xiao, H., Howard, M., Valera-Medina, A., Dooley, S., Bowen, P. J.. Energy Fuels. 30, 8701 (2016).Google Scholar
Percy, T., Polsgrove, T., Thomas, D.. NASA Marshall Space Flight CenterNASA Technical reports Server: Methane Propulsion Elements for Mars. Available at: https://ntrs.nasa.gov/search.jsp?R=20170004427 (accessed 27 October 2017).Google Scholar
Elam Greene, S., Protz, C., Garcia, C., Goodman, D., Baker, K.. NASA Technical reports Server: Additively Manufactured Combustion Devices Components for LOX/Methane Applications. Available at: https://ntrs.nasa.gov/search.jsp?R=20160011098 (accessed 27 October 2017).Google Scholar
Rasmussen, R. A., Khalil, M. A. K.. J. Geophys. Res. 86(10), 9826 (1981).Google Scholar
Kumar, A., Subramanian, K.A.. Applied Thermal Engineering 127, 95 (2017).Google Scholar
Park, Y. M., Lee, Y. J., Hussain, Z., Lee, Y. H., Park, H.. Neurogastroenterology & Motility. 29, e13077 (2017).Google Scholar
Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K., Payne, M. C.. Zeitschrift fuer Kristallographie. 220 (5-6), 567 (2005).Google Scholar
Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett., 49, 225 (1977).Google Scholar
Windischamn, H., Mark, P.. J. Electrochem. Soc.: Solid State Science and Techonolgy. 126(4), 627 (1979).Google Scholar