Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T01:07:17.771Z Has data issue: false hasContentIssue false

Effects of sputtering gas pressure dependence of surface morphology of ZnO films fabricated via nitrogen mediated crystallization

Published online by Cambridge University Press:  12 December 2016

Kazuya Iwasaki*
Affiliation:
Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
Koichi Matsushima
Affiliation:
Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
Daisuke Yamashita
Affiliation:
Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
Hyunwoong Seo
Affiliation:
Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
Kazunori Koga
Affiliation:
Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
Masaharu Shiratani
Affiliation:
Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
Naho Itagaki
Affiliation:
Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
Get access

Abstract

ZnO films were fabricated by RF magnetron sputtering with nitrogen mediated crystallization (NMC) under various gas pressures. X-ray diffraction measurements show that the NMC-ZnO films are highly crystalline regardless of the gas pressure, and the full width at half maximum values of the (0002) rocking curves range from 0.032 to 0.044°. In contrast, atomic force microscopy (AFM) reveals that the gas pressure plays an important role in determining the surface morphology of the films. The root-mean-square (RMS) roughness decreases monotonically from 1.05 to 0.60 nm with increasing pressure from 0.2 to 0.7 Pa. However, the RMS roughness increases with further increases in the pressure, reaching 2.15 nm at 2.1 Pa. The height distribution of the NMC-ZnO films derived from the AFM images is narrowest at 0.7 Pa, indicating that the smooth surface obtained at 0.7 Pa can be attributed to spatially uniform nucleation occurring in a short time period. These results indicate that the sputtering gas pressure is a key parameter for controlling the surface morphology of NMC-ZnO films.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hwang, D. K., Kang, S. H., Lim, J. H., Yang, E. J., Oh, J. Y., Yang, J. H. and Parket, S. J., Appl. Phys. Lett. 86, 222101 (2005).Google Scholar
Nakahara, K., Akasaka, S., Yuji, H., Tamura, K., Fujii, T., Nishimoto, Y., Takamizu, D., Sasaki, A., Tanabe, T., Takasu, H., Amaike, H., Onuma, T., Chichibu, S. F., Tsukazaki, A., Ohtomo, A., and Kawasaki, M., Appl. Phys. Lett. 97, 013501 (2010).CrossRefGoogle Scholar
Guo, X. L., Choi, J. H., Tabata, H. and Kawai, T., Jpn. J. Appl. Phys. 40, 177 (2001).CrossRefGoogle Scholar
Lim, J. H., Kang, C. K., Kim, K. K., Park, I. K., Hwang, D. K. and Park, S. J., Adv. Mater. 18, 2720 (2006).Google Scholar
Vispute, R. D., Talyansky, V., Trajanovic, Z., Choopun, S., Downes, M., Sharma, R. P., Venkatesan, T., Woods, M. C., Lareau, R. T., Jones, K. A. and Iliadis, A. A., Appl. Phys. Lett. 70, 2735 (1997).CrossRefGoogle Scholar
Coleman, V. A., Bradby, J. E., Jagadish, C., Munroe, P., Heo, Y. W., Pearton, S. J., Norton, D. P., Inoue, M. and Yano, M., Appl. Phys. Lett. 86, 2013105 (2005).Google Scholar
Nakamura, T., Yamada, Y., kusumori, T., Minoura, H. and Muto, H., Thin Solid Films 411, 6064 (2002).Google Scholar
Yan, J. F., Lu, Y. M., Liu, Y. C., Lianga, H. W., Li, B. H., Shen, D. Z., Zhang, J. Y. and Fan, X. W., J. Cryst. Growth 266, 505 (2004).Google Scholar
Itagaki, N., Kuwahara, K., Matsushima, K., Yamashita, D., Seo, H., Koga, K. and Shiratani, M., Opt. Eng. 53, 087109 (2014).Google Scholar
Itagaki, N., Kuwahara, K., Nakahara, K., Yamashita, D., Uchida, G., Koga, K. and Shiratani, M., Appl. Phys. Express 4, 011101 (2011).Google Scholar
Kuwahara, K., Itagaki, N., Nakahara, K., Yamashita, D., Uchida, G., Kamataki, K., Koga, K. and Shiratani, M., Thin Solid Films 520, 4674 (2012).Google Scholar
Shariadi, I., Oshikawa, K., Kuwahara, K., Matsuhima, K., Yamashita, D., Uchida, G., Koga, K., Shiratani, M. and Itagaki, N., Jpn. J. Appl. Phys. 52, 11NB03 (2013).Google Scholar
Jung, Y. S., No, Y. S., Kim, J. S. and Choi, W. K., J. Cryst. Growth 267, 85 (2004).Google Scholar
Moshkalyov, S. A., Steen, P. G., Gomez, S. and Graham, W. G., Appl. Phys. Lett. 75, 328330 (1999).Google Scholar
Hur, M. Y., Kim, J. S. and Lee, H. J., Thin Solid Films 587, 37 (2015).CrossRefGoogle Scholar
Sharifi-viand, A., Mahjani, M. G. and Jafarian, M., Synth. Met. 191, 104112 (2014).Google Scholar