Skip to main content
×
Home

High Magnetic Field Annealing of Mn-Ga Intermetallic Alloys

  • Daniel R. Brown (a1) (a2), Ke Han (a2), Theo Siegrist (a2) (a3), Tiglet Besara (a2) and Rongmei Niu (a2)...
Abstract
Abstract

Mn-Ga alloys have shown promising hard magnetic properties, even though these alloys contain no rare-earth metals. However, much work is needed before Mn-Ga alloys become viable permanent magnets for applications. One of the challenges is to enhance the remanence. One technique to improve this property is applying a magnetic field during the heat treatment process. Magnetic annealing can promote phase transformation of the phases with high magnetic moment. This results in an increased remanence. Bulk samples of Mn-Ga alloys were made by mechanically alloying in order to create a nanostructured composite, followed by heat treatments in the presence of a 31 T magnetic field. The heat treatment temperatures were kept low in order to keep the refined microstructure. All the alloys exhibit hard magnetic properties at room temperature with large coercivity. This work reports findings of magnetic field annealed Mn-Ga bulk that exhibit high coercivities up to 19.4 kOe and increased remanence of 50% over the binary system, achieving values up to 6.9 emu/g. This is the highest coercivity reported in bulk Mn-Ga samples.

Copyright
Corresponding author
*(Email: dbrown@magnet.fsu.edu)
References
Hide All
[1] Buschow K. H. J., “New developments in hard magnetic materials,” Rep. Prog. Phys., vol. 54, no. 9, p. 1123, Sep. 1991.
[2] Herbst J. F., “R2Fe14B materials: Intrinsic properties and technological aspects,” Rev. Mod. Phys., vol. 63, pp. 819898, Oct. 1991.
[3] Lewis L. H. and Jiménez-Villacorta F., “Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation,” Metall. Mater. Trans. A, vol. 44, no. 1, pp. 220, Jul. 2012.
[4] Feng J. N., Zhao X. G., Ning X. K., Shih C. W., Chang W. C., Ma S., Liu W., and Zhang Z. D., “Phase evaluation, magnetic, and electric properties of Mn60+xGa40−x (x = 0–15) ribbons,” J. Appl. Phys., vol. 115, no. 17, p. 17A750, May 2014.
[5] Brown D. R., Han K., and Siegrist T., “Hard magnetic properties observed in bulk Mn1−xGax,” J. Appl. Phys., vol. 115, no. 17, p. 17A723, May 2014.
[6] Coey J. M. D., “New permanent magnets; manganese compounds,” J. Phys. Condens. Matter, vol. 26, no. 6, p. 064211, Feb. 2014.
[7] Wei J. Z., “Structural properties and large coercivity of bulk Mn3-xGa (0 ≤ x ≤ 1.15),” J. Appl. Phys., vol. 115, no. 17, 2014.
[8] El-Gendy A. A. and Hadjipanayis G., “Nanostructured D022-Mn3Ga with high coercivity,” J. Appl. Phys., vol. 48, no. 12, p. 125001, Apr. 2015.
[9] Ener S., Skokov K. P., Karpenkov D. Y., Kuz’min M. D., and Gutfleisch O., “Magnet properties of Mn70Ga30 prepared by cold rolling and magnetic field annealing,” J. Magn. Magn. Mater., vol. 382, pp. 265270, May 2015.
[10] Ma Q. L., Zhang X. M., Miyazaki T., and Mizukami S., “Artificially engineered Heusler ferrimagnetic superlattice exhibiting perpendicular magnetic anisotropy,” Sci. Rep., vol. 5, Jan. 2015.
[11] Saito T. and Nishio-Hamane D., “New hard magnetic phase in Mn–Ga–Al system alloys,” J. Alloys Compd., vol. 632, pp. 486489, May 2015.
[12] Balke B., Fecher G. H., Winterlik J., and Felser C., “Mn3Ga, a compensated ferrimagnet with high Curie temperature and low magnetic moment for spin torque transfer applications,” Appl. Phys. Lett., vol. 90, no. 15, pp. 152504–152504–3, Apr. 2007.
[13] Winterlik J., Balke B., Fecher G. H., Felser C., Alves M. C. M., Bernardi F., and Morais J., “Structural, electronic, and magnetic properties of tetragonal Mn3-xGa : Experiments and first-principles calculations,” Phys. Rev. B, vol. 77, p. 054406, Feb. 2008.
[14] Saito T. and Nishimura R., “Hard magnetic properties of Mn-Ga melt-spun ribbons,” J. Appl. Phys., vol. 112, no. 8, p. 083901, Oct. 2012.
[15] Huh Y., Kharel P., Shah V. R., Li X. Z., Skomski R., and Sellmyer D. J., “Magnetism and electron transport of MnyGa (1 < y < 2) nanostructures,” J. Appl. Phys., vol. 114, no. 1, p. 013906, Jul. 2013.
[16] Ma Q., Sugihara A., Suzuki K., Zhang X., Miyazaki T., and Mizukami S., “TETRAGONAL HEUSLER-LIKE Mn–Ga ALLOYS BASED PERPENDICULAR MAGNETIC TUNNEL JUNCTIONS,” SPIN, vol. 04, no. 04, p. 1440024, Sep. 2014.
[17] Cullity B.D., Introduction to Magnetic Materials, 2nd ed. Piscataway: Wiley, 2012.
[18] Cui B.z., Han K., Garmestani H., Schneider-Muntau H.j., Su J.h., and Liu J.p., “Enhancement of material properties by magnetic field assisted phase transformation,” in Materials Processing in Magnetic Fields, 0 vols., WORLD SCIENTIFIC, 2005, pp. 1928.
[19] Cui B. Z., Han K., Garmestani H., Su J. H., Schneider-Muntau H. J., and Liu J. P., “Enhancement of exchange coupling and hard magnetic properties in nanocomposites by magnetic annealing,” Acta Mater., vol. 53, no. 15, pp. 41554161, Sep. 2005.
[20] Cui B. Z., Yu C. T., Han K., Liu J. P., Garmestani H., Pechan M. J., and Schneider-Muntau H. J., “Magnetization reversal and nanostructure refinement in magnetically annealed Nd2Fe14B∕α-Fe-type nanocomposites,” J. Appl. Phys., vol. 97, no. 10, p. 10F308, May 2005.
[21] Cui B. Z., Han K., Zhang Y., Liu J. P., Garmestani H., Liu S., and Schneider-Muntau H. J., “Crystallization, morphology and magnetic properties of melt-spun (Nd,Pr,Dy)2(Fe,Co,Mo)14B/ alpha;-Fe nanocomposites,” IEEE Trans. Magn., vol. 40, no. 4, pp. 28672870, Jul. 2004.
[22] Cui B. Z., Han K., Li D. S., Garmestani H., Liu J. P., Dempsey N. M., and Schneider-Muntau H. J., “Magnetic-field-induced crystallographic texture enhancement in cold-deformed FePt nanostructured magnets,” J. Appl. Phys., vol. 100, no. 1, p. 013902, Jul. 2006.
[23] Cui B. Z., Han K., Garmestani H., and Schneider-Muntau H. J., “Structure and magnetic properties of FePt and FePt–Ag nanostructured magnets by cyclic cold rolling,” J. Appl. Phys., vol. 99, no. 8, p. 08E910, Apr. 2006.
[24] Han K., “Materials Processing Under the Influence of External Fields: High Magnetic Field Influences on Fabrication of Materials with Magnetic Phases.”
[25] Chikazumi S., Physics of Ferromagnetism, 2 edition. Oxford : New York: Clarendon Press, 1997.
[26] Wang X., Qi M., and Yi S., “Crystallization behavior of bulk amorphous alloy Zr62Al8Ni13Cu17 under high magnetic field,” Scr. Mater., vol. 51, no. 11, pp. 10471050, Nov. 2004.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Advances
  • ISSN: -
  • EISSN: 2059-8521
  • URL: /core/journals/mrs-advances
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 387 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.