Skip to main content Accessibility help

Effect of dielectric character of electron transporting materials on the performance of organic light-emitting diodes

  • Rohit Ashok Kumar Yadav (a1), Deepak Kumar Dubey (a1), Sun-Zen Chen (a2), Sujith Sudheendran Swayamprabha (a1), Tzu-Wei Liang (a3) and Jwo-Huei Jou (a1)...

Organic light-emitting diodes (OLEDs) have progressively attracted generous attention because of their versatile applications in solid state lighting and full color displays. High-efficiency is crucial for OLED devices being energy saving and to have a longer lifespan. Numerous approaches have been attempted to attain high-efficiency OLEDs via newly synthesized organic materials, light-extraction structure design and energy-efficient device architectures. The organic materials used in optoelectronic devices have inherently low dielectric constant. In this work, we demonstrate a comprehensive model to quantitatively investigate the role of dielectric constant of the electron transporting material on the electric field distribution, charge drift and exciton recombination probability across the emissive layer (EML) and electron transport layer (ETL) in organic light-emitting diode via commercialized electrical simulation package SETFOS.

Corresponding author
Hide All
[1]Im, Y., Byun, S.Y., Kim, J. H., Lee, D. R., Oh, C. S., Yook, K. S. and Lee, J. Y., Adv. Funct. Mater. 27, 1603007 (2017).
[2]Mu, Y., Zhang, S., Yue, S., Wu, Q. and Zhao, Y., Solid State Electronics 114, 87 (2015).
[3]Jou, J. H., Kumar, S., Agrawal, A., Li, T. H. and Sahoo, S., J. Mater. Chem. C 3, 2974 (2015).
[4]Malliaras, G. G. and Scott, J. C., J. Appl. Phys. 83, 5399 (1998).
[5]Geffroy, B., Roy, P. and Prat, C, Polym. Int. 55, 572 (2006).
[6]Pettinen, A., Aho, T., Smolander, O. P., Manninen, T., Saarinen, A., Taattola, K. L., Harja, O. Y. and Linne, M. L., Bioinformatics 21, 357 (2005).
[7]Liang, H. and Zhuang, W., Energies 7, 2027 (2014).
[8]Ingram, G. L. and Lu, Z. H., J. of Photonics for Energy 4, 40993 (2014).
[9]Zhu, X. J., Shang, J. and Liu, G., Chin. Sci. Bull. 59, 2363 (2014).
[10]Zhang, L., Li, X. L., Luo, D., Xiao, P., Xiao, W., Song, Y., Ang, Q and Liu, B., Materials 10, 1378 (2017).
[11]Wang, F., Liu, S. and Zhang, C., Microelectronics 38, 259 (2007).
[12]Lee, Y. H., Kim, W. J., Cho, K. S., Lee, J. Y. and Hong, J. W., J. of the Korean Physical Society 53, 1460 (2008).
[13]Cao, J. S., Guan, M., Cao, G. H., Ping, Z. Y., Min, L. J. and Shan, Q. D., Chin. Phys. Lett. 25, 179 (2008).
[14]Torabi, S., Jahani, F., Severen, I. V., Kanimozhi, C., Patil, S., A Havenith, R. W., Chiechi, R. C., Lutsen, L., Vanderzande, D. J. M., Cleij, T. J., Hummelen, J. C. and Koster, L. J. A., Adv. Funct. Mater. 25, 150 (2015).
[15]Debye, P., Chemical Catalog, New York, 172 (1929).
[16]Morgan, S. O. and Yager, W. A., Ind. Eng. Chem. 32, 1519 (1940).
[17]Kuang, W. and Nelson, S. O., J. of Microwave Power and Electromagnetic Energy 32, 114 (1997).
[18]Pommerehne, J., Vestweber, H., Tak, Y. H. and Bassler, H., Synth. Met. 76, 654 (1996).
[19]Burin, A. L. and Ratner, M. A., J. Phys. Chem. A 104, 4704 (2000).
[20]Sharifi, M. J. and Gooraji, F. A., J. of Organic Semiconductors 1, 1 (2014).
[21]Armin, A., Stoltzfus, D. M., Donaghey, J. E., Clulow, A. J., Nagiri, R. C. R., Burn, P. L., Gentle, I. R. and Meredith, P., J. Mater. Chem. C 5, 3736 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Advances
  • ISSN: -
  • EISSN: 2059-8521
  • URL: /core/journals/mrs-advances
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed