Skip to main content Accessibility help

Effects of Al2O3 Type on Activity of Al2O3-Supported Rh Catalysts in Single-Walled Carbon Nanotubes Growth by CVD

  • Hoshimitsu Kiribayashi (a1), Takayuki Fujii (a1), Takahiro Saida (a2), Shigeya Naritsuka (a1) and Takahiro Maruyama (a2)...


We carried out single-walled carbon nanotube (SWCNT) growth using a Rh catalyst on Al2O3 buffer layers that were prepared by three different methods based on electron beam (EB) evaporation: native oxidation of Al layer deposited by EB ([EB(Al)+NO]-Al2O3 layer); thermal oxidation of Al layer deposited by EB ([EB(Al)+TO]-Al2O3 layer); EB deposition of Al2O3 layer ([EB(Al2O3)]-Al2O3 layer). SWCNT yield was the largest for the [EB(Al2O3)]-Al2O3 layer, while SWCNTs were not grown on the [EB(Al)+NO]- Al2O3 layer. Transmission electron spectroscopy showed that most of Rh particle sizes were distributed between 1.0 and 2.6 nm on the [EB(Al)+NO]- Al2O3 and [EB(Al2O3)]- Al2O3 layers, while they were distributed between 1.8 and 4.2 nm on the [EB(Al)+TO]- Al2O3 layer. This result indicates that surface migration of Rh catalysts was suppressed on the [EB(Al2O3)]- Al2O3 layer, resulting in the largest SWCNT yield. On the other hand, enlargement of Rh catalyst particles occurred on the [EB(Al)+TO]- Al2O3 layer, leading to the reduction of SWCNT yield. Taking into account our previous study, inward diffusion of Rh catalysts into the Al2O3 buffer layer inhibited SWCNT growth on the [EB(Al)+NO]- Al2O3 layer, although enlargement of Rh particle size was suppressed. We also carried out ultra-violet photoemission measurements for Rh catalysts on the [EB(Al)+TO]- Al2O3 and [EB(Al2O3)]- Al2O3 layers and investigated the electronic states of Rh catalysts on them.


Corresponding author


Hide All
1. Iijima, S., Ichihashi, T., Nature 363, 603 (1993).
2. Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H., Nature 424, 654 (2003).
3. Dürkop, T., Getty, S.A., Cobas, E., Fuhre, M. S., Nano Lett. 4, 35 (2004).
4. Hong, S., Myung, S., Nat. Nanotechnol. 2, 207 (2007).
5. Tans, S. J., Vershueren, A. R. M., Dekker, C., Nature 393, 49 (1998).
6. Wind, S. J., Appenzeller, J., Martel, R., Derycke, V., Abouris, P. H., Appl. Phys. Lett. 80, 3817 (2002).
7. Kondo, D., Sato, S., Kawabata, A., Awano, Y., Nanotechnology 19, 435601 (2008).
8. Iwasaki, T., Robertson, J., Kawarada, H., Nano Lett. 8, 886 (2008).
9. Dai, H., Rinzler, A. G., Nikolaev, P., Thess, A., Colvert, D. T., Smalley, R. E., Chem. Phys. Lett. 260, 471 (1996).
10. Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., Kohno, M., Chem. Phys. Lett. 360, 229 (2002).
11. Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M., Iijima, S., Science 306, 1362 (2004).
12. Noda, S., Hasegawa, K., Sugime, H., Kakechi, K., Zhang, Z., Maruyama, S., Yamaguchi, Y., Jpn. J. Appl. Phys. 46, L399 (2007).
13. Cantoro, M., Hofmann, S., Pisana, S., Scardaci, V., Parvez, A.. Ducati, C., Ferrari, A. C., Blackburn, A. M., Wang, K. Y., Robertson, J., Nano Lett. 6, 1107 (2006).
14. Maruyama, T., Kondo, H., Ghosh, R., Kozawa, A., Naritsuka, S., Iizumi, Y., Okazaki, T., Iijima, S., Carbon 96, 6 (2016).
15. Kiribayashi, H., Fujii, T., Kozawa, A., Ogawa, S., Saida, T., Naritsuka, S., Maruyama, T., J. Cryst. Growth, available on line 27 October (2016) (in press).
16. Vesselli, E., Baraldi, A., Comelli, G., Lizzit, S., Rosei, R., ChemPhysChem 5, 1133 (2004).
17. Wang, J. H., Lee, C. S., Lin, M. C., J. Phys. Chem. C 113, 6681 (2009).
18. Kozawa, A., Kiribayashi, H., Ogawa, S., Saida, T., Naritsuka, S., Maruyama, T., Diam. Relat. Mater. 63, 159 (2016)
19. Jorio, A., Saito, R., Hahner, J. H., Liever, C. M., Hunter, M., McClure, T., Dresselhaus, G., Dresselhaus, M. S., Phys. Rev. Lett. 86, 1118 (2001).
20. Amama, P. B., Pint, C. L., Kim, S. M., McJilton, L., Eyink, K. G., Stach, E. A., Hauge, R. H., Maruyama, B., ACS Nano 4, 895 (2010).
21. Nørskov, J. K., Bligaard, T., Rossmeisl, J., Christensen, C. H., Nature Chem. 1, 37 (2009).
22. Höchst, H., Kelly, M. K., Phys. Rev. B 30, 1708 (1984).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed