Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T09:53:23.409Z Has data issue: false hasContentIssue false

Electrochemical Impedance Spectrocopy Study Of Glucose Adsorption On Gold Nanoparticles-Graphite Paste Electrode

Published online by Cambridge University Press:  04 September 2017

Azucena Osornio
Affiliation:
Centro de Investigación y Desarrollo Tecnológico en electroquímica. Parque Tecnológico Querétaro s/n Sanfandila, C.P.76703, Pedro Escobedo, Querétaro, México.
Luis A. García
Affiliation:
Centro de investigación en Química Aplicada. Blvd. Enrique Reyna # 140 Col. San José de los Cerritos Saltillo, Coahuila. México. C.P.25294.
Leonor M. Blanco
Affiliation:
Universidad Autónoma de Nuevo León, Laboratorio de Electroquímica, Guerrero y progreso s/n, Col. Treviño, Monterrey, N.L. C. P.64570, Nuevo León, México.
Rene Antaño
Affiliation:
Centro de Investigación y Desarrollo Tecnológico en electroquímica. Parque Tecnológico Querétaro s/n Sanfandila, C.P.76703, Pedro Escobedo, Querétaro, México.
Federico Castañeda*
Affiliation:
Centro de Investigación y Desarrollo Tecnológico en electroquímica. Parque Tecnológico Querétaro s/n Sanfandila, C.P.76703, Pedro Escobedo, Querétaro, México.
Get access

Abstract

Electrochemical Impedance Spectroscopy (EIS), is a confirmed tool for investigation of electrode/electrolyte interfaces and surface-modified electrodes. In the present work, we apply this approaching way to obtain a deeper insight into the electrochemical oxidation mechanism of the glucose in alkaline media. We studied the EIS response of gold nanoparticles embedded in carbon paste and use it as an electrode for the electro-oxidation of glucose. The results were compared with those of a polycrystalline gold electrode. In order to determine the polarization potentials for EIS tests, cyclic voltammetry is first conducted in 0.3 M KOH with 10 mM glucose, recorded at a scan rate of 1 mVs-1. Three polarization potentials were chosen, corresponding to: the open circuit potential (OCP), glucose oxidation and gold oxide formation respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tominaga, M, Shimazoe, T, Nagashima, M, Taniguchi, I. Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions. Electrochemistry Communications. 2005 2//;7(2):189–93.Google Scholar
Wang, X, Liu, E, Zhang, X. Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution. Electrochimica Acta. 2014 6/1/;130(0):253–60.Google Scholar
Pasta, M, La Mantia, F, Cui, Y. Mechanism of glucose electrochemical oxidation on gold surface. Electrochimica Acta. 2010 8/1/;55(20):5561–8.Google Scholar
Lang, NJ, Liu, B, Liu, J. Characterization of glucose oxidation by gold nanoparticles using nanoceria. Journal of Colloid and Interface Science. 2014 8/15/;428(0):7883.CrossRefGoogle Scholar
Aoun, SB, Bang, GS, Koga, T, Nonaka, Y, Sotomura, T, Taniguchi, I. Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions. Electrochemistry Communications. 2003 4//;5(4):317–20.Google Scholar
Pasta, P, M., Ruffo, R, Falletta, E, Mari, CM, Pina, CD. Alkaline glucose oxidation on nanostructured gold electrodes. Gold Bulletin. 2010;43(1):5764.CrossRefGoogle Scholar
Okatsu, H, Kinoshita, N, Akita, T, Ishida, T, Haruta, M. Deposition of gold nanoparticles on carbons for aerobic glucose oxidation. Applied Catalysis A: General. 2009 11/15/;369(1–2):814.CrossRefGoogle Scholar