Skip to main content Accessibility help

Electronic Transport in Oxidized Zigzag Graphene Nanoribbons

  • Venkata Sai Pavan Choudary Kolli (a1), Vipin Kumar (a1), Shobha Shukla (a1) and Sumit Saxena (a1)


The electronic and transport properties of graphene nanoribbons strongly depends on different types of adatoms. Oxygen as adatom on graphene is expected to resemble oxidized graphene sheets and enable in understanding their transport properties. Here, we report the transport properties of oxygen adsorbed zigzag edge saturated graphene nanoribbon. It is interesting to note that increasing the number of oxygen adatoms on graphene sheets lift the spin degeneracy as observed in the transmission profile of graphene nanoribbons. The relative orientation of the oxygen atom on the graphene basal plane is detrimental to flow of spin current in the nanoribbon.


Corresponding author


Hide All
1. Novoselov, K. S. et al. Science 306, 666 (2004).
2. Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., Ciraci, S., Phys. Rev. Lett. 102, 236804 (2009).
3. Saxena, S., Chaudhary, R. P. and Shukla, S., Sci. Rep. 6, 31073 (2016)
4. Chaudhary, R. P., Saxena, S. and Shukla, S., Nanotechnology 27, 495701 (2016).
5. Zhou, S. Y. et al. Nat. Mater.6, 770 (2007).
6. Quhe, R. et al. NPG Asia Mater.4, e16 (2012).
7. Murayama, H., Maeda, T., Nature 345, 791 (1990).
8. Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M., Nature 458, 872 (2009).
9. Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H., Nature 458, 877 (2009).
10. Hiura, H., Appl. Surf. Sci. 222, 374 (2004).
11. Tapasztó, L., Dobrik, G., Lambin, P. and Biró, L. P., Nat. Nanotechnol. 3, 397 (2008).
12. Fujita, M., Wakabayashi, K., Nakada, K., Kusakabe, K., J. Phys. Soc. Jpn. 65, 1920 (1996).
13. Lan, J., Zheng, X.H., Song, L.L., Wang, R.N., Zeng, Z., Solid State Commun. 152 1635 (2012).
14. Mao, Y., Yuan, J., Zhong, J., J. Phys.: Condens. Matter 20, 115209 (2008).
15. Chen, X., Song, K., Zhou, B., Wang, H., Zhou, G., App. Phys. Lett. 98, 093111 (2011).
16. Zhang, G. P., Liu, X., Wang, C. Z., Yao, Y. X., Zhang, J., Ho, K. M., J. Phys.: Condens. Matter 25, 105302 (2013).
17. Ataca, C., Aktürk, E., Şahin, H., and Ciraci, S., J. Appl. Phys. 109, 013704 (2011).
18. Gracia-Espino, E., Lopez-Urıas, F., Terronesd, H., Terrones, M., RSC Adv. 6, 21954 (2016).
19. Saxena, S., Tyson, T. A and Negusse, E., J. Phys. Chem. Lett. 1, (2011) 3433
20. Saxena, S., Tyson, T. A., Shukla, S., Negusse, E., Chen, H. and Bai, J., Appl. Phys. Lett. 99, (2011) 013104.
21. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).
22. Kohn, W. and Sham, L. J., Phys. Rev., 140, A1133 (1965).
23. Ozaki, T., Kino, H., Yu, J., Han, M. J., Kobayashi, N., Ohfuti, M., Ishii, F., Ohwaki, T. and Weng, H., OpenMX Website, (Accessed June 2016)
24. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett., 45, 566 (1980).
25. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).
26. Troullier, N. and Martins, J. L., Phys. Rev. B: Condens. Matter, 43, 1993 (1991).
27. Ozaki, T., Phys. Rev. B: Condens. Matter, 67, 155108 (2003).
28. Ozaki, T. and Kino, H., Phys. Rev. B: Condens. Matter Mater. 69, 195113 (2004).
29. Ozaki, T., Nishio, K., Weng, H. and Kino, H., Phys Rev B. 81, 075422 (2010).


Related content

Powered by UNSILO

Electronic Transport in Oxidized Zigzag Graphene Nanoribbons

  • Venkata Sai Pavan Choudary Kolli (a1), Vipin Kumar (a1), Shobha Shukla (a1) and Sumit Saxena (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.