Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T16:53:44.968Z Has data issue: false hasContentIssue false

Evolution of cations speciation during the initial leaching stage of alkali-borosilicate-glasses

Published online by Cambridge University Press:  27 January 2020

Osama M. Farid
Affiliation:
Reactors Department, Nuclear Research Center, Atomic Energy Authority of Egypt, P.O. 13759, Inshas, Cairo, Egypt; usamafa98@hotmail.co.uk
M.I. Ojovan
Affiliation:
Department of Materials Science and Engineering, The University of Sheffield, UK; m.ojovan@sheffield.ac.uk
R.O. Abdel Rahman*
Affiliation:
Hot Laboratory Center, Atomic Energy Authority of Egypt, P.O. 13759, Inshas, Cairo, Egypt; alaarehab@yahoo.com
*
Get access

Abstract

Alkali-borosilicate glasses (ABS) are used as host immobilization matrices for different radioactive waste streams and are characterized by their ability to incorporate a wide variety of metal oxides with respectively high waste loadings. The vitreous wasteform is also characterized by very good physical and chemical durability. The durability of three ABS compositions were analyzed by investigating their leaching behavior using the MCC1 test protocol and these data were used to investigate the waste components retention in the altered layer and the evolution of the interfacial water composition during the test. The results indicated that the Mg species evolution is exceptional with respect to other alkaline elements and dependent on glass matrix composition and leaching progress, while transition elements speciation is fairly constant throughout leaching process and independent on glass compositions. Si and B species are changing during leaching process and are affected by waste composition. For modified wasteform sample, evolution of Mg, Si and B species is respectively constant, whereas at highest waste loading, these elements have fairly constant speciation evolution within the first 2 weeks of leaching.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel Rahman, R.O., El Kamash, A.M., Zaki, A.A., El Sourougy, M.R., In Proceedings of the International Conference on the Safety of Radioactive Waste Disposal (IAEA, Vienna, 2005) IAEA-CN-135/81, p. 317Google Scholar
Abdel Rahman, R.O., Kozak, M.W., Hung, Y.T., In Handbook of Environment and Waste Management, edited by Hung, Y.T., Wang, L.K., Shammas, N.K. (World Scientific Publishing Co., Singapore, 2014)p. 949.CrossRefGoogle Scholar
Abdel Rahman, R.O., El-Kamash, A.M., Zaki, A.A., Hazard. Mater. 145, 372-380 (2007).CrossRefGoogle Scholar
NEA, The Safety Case for Deep Geological Disposal of Radioactive Waste, (NEA, Paris, 2013)Google Scholar
NEA, Scenario Development Workshop Synopsis, Integration Group for the Safety Case, (NEA, Paris, 2016)Google Scholar
NEA, Managing Information and Requirements in Geological Disposal Programmes, (NEA, Paris, 2018)Google Scholar
NEA, Updating the NEA International FEP List: An IGSC Technical Note Technical Note 2: Proposed Revisions to the NEA International FEP List, (NEA, Paris, 2014)Google Scholar
Abdel Rahman, R.O., Ojovan, Michael I., Innov. Corrosion Mater. Sci. 4 (2), 90-95 (2014).Google Scholar
Menard, O., Advocat, T., Ambrosi, J. P., Michard, A., Appl. Geochem. 13, 105-126 (1998).CrossRefGoogle Scholar
Abdel Rahman, R.O., Zein, D.H., Abo Shadi, H., Chem. Eng. J. 228, 772-780 (2013).CrossRefGoogle Scholar
Abdel Rahman, R.O., Zein, D.H., Abo Shadi, H., Chem. Eng. J. 245, 276-287 (2014).CrossRefGoogle Scholar
Drace, Z., Mele, I., Ojovan, M.I., Abdel Rahman, R.O.. Mater. Res. Soc. Symp. Proc. 1475, 253-264(2012).CrossRefGoogle Scholar
IAEA, Radioactive waste management glossary (IAEA, Vienna, 2003).Google Scholar
Abdel Rahman, Rehab O., Rakhimov, Ravil Z., Rakhimova, Nailya R., Ojovan, Michael I., Cementitious materials for nuclear waste immobilization, (Wiley, New York, 2014).Google Scholar
Osama M Farid, R.O.Abdel Rahman, Mater. Chem. Phy. 186, 462-469(2017).10.1016/j.matchemphys.2016.11.020CrossRefGoogle Scholar
Farid, Osama M., Ojovan, Michael I., Massoud, A., Abdel Rahman, R.O., Materials 12(9) 1462(2019).CrossRefGoogle Scholar
Ojovan, M.I., Lee, W.E.. An Introduction to Nuclear Waste Immobilisation (Elsevier, Amsterdam, 2014) p. 362.Google Scholar
Ojovan, M.I.. Handbook of Advanced Radioactive Waste Conditioning Technologies (Woodhead, Cambridge, 2011) p. 512.CrossRefGoogle Scholar
The National Academies Press. Waste Forms Technology and Performance: Final Report. Committee on Waste Forms Technology and Performance (National Research Council: Washington,2011) p. 340Google Scholar
Ma, T., Jivkov, A.P., Li, W., Liang, W., Wang, Y., Xu, H., Han, X., J. Nucl. Mater. 486, 70-85 (2017).CrossRefGoogle Scholar
Jantzen, C.M., Trivelpiece, C.L., Crawford, C.L., Pareizs, J.M., Pickett, J.B., Int. J. Appl. Glass Sci. 8, 6983 (2017).CrossRefGoogle Scholar
Neeway, J.J., Rieke, P.C., Parruzot, B.P., Ryan, J.V., Asmussen, R.M., Geochim. Cosmochim. Acta 226, 132148(2018).CrossRefGoogle Scholar
Guoa, R., Brigdena, C.T., Ginb, S., Swantonc, S.W., Farnana, I., J. Non-Cryst. Solids 497, 8292 (2018).CrossRefGoogle Scholar
Gin, S., Jollivet, P., Fournier, M., Berthon, C., Wang, Z., Mitroshkov, A., Zhu, Z., Ryan, J.V., Geochim. Cosmochim. Acta 151, 6885 (2015).CrossRefGoogle Scholar
Inagaki, Y., Kikunaga, T., Idemitsu, K., Arima, T., Int. J. Appl. Glass Sci. 4, 317-327 (2013).CrossRefGoogle Scholar
Kim, C.W.; Lee, B.G.J. Korean Radioact. Waste Soc. 11, 19 (2013).CrossRefGoogle Scholar
Curti, E., Grolimund, D., Borca, C.N., Appl. Geochem. 27, 5663 (2012).CrossRefGoogle Scholar
Curti, E., Dahn, R., Farges, F., Vespa, M., Geochim. Cosmochim. Acta 73, 22832298(2009).CrossRefGoogle Scholar
Jollivet, P., Angeli, F., Cailleteau, C., Devreux, F., Frugier, P. , Gin, S., J. Non-Cryst. Solids 354, 49524958(2008).CrossRefGoogle Scholar
Manaktala, H.K., An Assessment of Borosilicate Glass as a High-level Waste Form, (NRC, USA, 1992).Google Scholar
Ojovan, M.I., Lee, W.E., Metall. Mater. Trans. A 42, 837-851(2011).CrossRefGoogle Scholar
Trocellier, P., Djanarthany, S., Chene, J., Haddi, A., Brass, A.M., Poissonnet, S., Farges, F., Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater At. 240 (1-2) 337-344(2005).CrossRefGoogle Scholar
Dugger, D. L., Stanton, J. H., Irby, B. N., McConnel, B. L., Cummings, W. W., and Maatman, R. W., J. Phys. Chem. 68, 757-760 (1964).CrossRefGoogle Scholar
Leaching of glass waste structure and humidity cell tests (2019). available at:https://uu.diva-portal.org/smash/get/diva2:1331420/FULLTEXT01.pdf (accessed 22 October 2019)Google Scholar