Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T16:56:08.933Z Has data issue: false hasContentIssue false

Growth of HfSixOy/ HfO2 Thin Film on Si Substrate by Microwave Generated Remote Plasma Assisted Atomic Layer Deposition Techniques

Published online by Cambridge University Press:  22 February 2016

Hiroki Ishizaki*
Affiliation:
Saitama Institute of technology, 1690 Fusaiji, Fukaya, Saitama, 369-0293, Japan
*
Get access

Abstract

In this paper, we will report on the formation of HfSixOy layer on an HF-last Si(100) substrate by atomic layer deposition from tetrakis(dimethylamido)hafnium (TDMAH) and atomic oxygen generated by a microwave remote plasma. Transmission electron microscopy observations of HfSixOy /Si structures deposited at 100 and 300℃ revealed that 3∼5-nm-thick amorphous HfSixOy layers were unintentionally formed preceded the growth of crystalline Hf-rich HfSixOy layers. To understand the mechanism of this unintentional growth of HfSixOy, the depth profiles of Hf, O and Si elements were measured by X-ray photoelectron spectroscopy. It was found that Hf atoms deeply diffused into the Si substrate. From these results, suppression of Hf in diffusion to the Si substrate must be important to reduce the capacitance equivalent thickness of the metal-oxide-semiconductor capacitors. The roles of TDMAH and plasma-generated oxygen radical on the enhanced diffusion of Hf will be discussed in detail.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, M. J., Shin, Y. T., Wu, M. K. and Tsai, F. Y., J. Appl. Phys., 101, 033130 (2007).Google Scholar
Kobayashi, M., Thareja, G., Ishibashi, M., Sun, Y., Griffin, P., McVittie, J., Pianetta, P., Saraswat, K., and Nishi, Y., J. Appl. Phys. 106, 104117(2009).CrossRefGoogle Scholar
Moulder, J. F., Stickle, W. F., Sobol, P. E. and Bomben, K. D., “Handbook of X-ray Photoelectron Spectroscopy”, ed. Chastain, J., (Perkin-Elmer Corporation Physical Electronics Division, 1992) pp. 40169.Google Scholar
He, G., Chen, X. and Sun, Z., Surface Science Reports, 68, 68. (2013)Google Scholar
Kukli, K., Pilvi, T., Ritala, M., Sajavaara, T., Lu, J. and Leskela, M., Thin Solid Films 491, 328 (2005).CrossRefGoogle Scholar
Cho, M., Park, H. B., Lee, S. W., Hwang, C. S, Jang, G. H. and Jeong, J., Applied Phys. Lett. 83, 5503(2003).Google Scholar
Langereis, E., Keijmel, J., van de Sanden, M. C. M., and Kessels, W. M. M., Appl. Phys. Lett. 92, 231904(2008).Google Scholar
Fukuda, Y., Ishizaki, H., Otani, Y., Yamamoto, C., Yamanaka, J., Sato, T., Takamatsu, T., Okamoto, H. and Narita, H., Appl. Phys. Lett. 102, 132904(2013)Google Scholar
Ogawa, A., Iwamoto, K., Ota, H., Moria, Y., Ikeda, M., Nabatame, T. and Toriumi, A.,Microelectronic Engineering, 84, 1861(2007)CrossRefGoogle Scholar