Skip to main content Accessibility help
×
×
Home

Iron-Doped Apatite Nanoparticles Delivered via Electrospun Fiber Mesh for Maximized Bacterial Killing by Bacteriophage

  • Jessica M. Andriolo (a1), Gary F. Wyss (a2), John P. Murphy (a3), Marisa L. Pedulla (a4), M. Katie Hailer (a5) and Jack L. Skinner (a6)...
Abstract

According to the Centers for Disease Control (CDC) and prevention, at least 2 million people in the United States become infected with antibiotic-resistant bacteria, and at least 23,000 people die each year as a direct result of those infections. One alternative to traditional antibiotics is bacteriophage (phage) therapy. Phage therapy utilizes bacteria-specific viruses to infect and kill bacteria cells. The specificity of these viruses is beneficial in that phage used for therapeutic purposes do not harm the human microbiota, nor do phage infect eukaryotic cells. It has been discovered that iron-doped apatite nanoparticles (IDANPs) significantly enhance phage killing of bacteria cells. The biocompatibility of apatite, coupled with its effectiveness as an adjuvant to enhance an alternative antibiotic therapy, makes it of interest for medical applications. Previously, researchers have encased phage in a microfluidic channel in coaxially electrospun fibers, allowing phage to remain viable after several weeks storage at 4 °C. Here, we have constructed a polymer fiber layer using electrospinning (ES) for delivery of IDANP adjuvants to compliment phage treatment delivery fibers. The IDANP delivery layer constructed is composed of polyethylene oxide (PEO) doped with the nanoparticles. When compared to media-only and IDANP-only controls, results show IDANPs delivered through a PEO fiber mesh remain effective at enhancement of phage infectivity.

Copyright
Corresponding author
*(Email: Jessicamarie1304@yahoo.com)
References
Hide All
1. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, (2013).
2. Chatterjee, S. and Rothenberg, E., Viruses 4, 3162 (2012).
3. Young, R., Microbiol. Rev. 56, 430 (1992).
4. Fenton, M., Ross, P., McAuliffe, O., O’Mahony, J., and Coffey, A., Bioeng. Bugs 1, 9 (2010).
5. d’Herelle, F., B. New York Acad. Med. 7, 329 (1931).
6. Haq, I. U., Chaudhry, W. N., Akhtar, M. N., Andleeb, S., and Qadri, I., Virol. J. 9, (2012).
7. Chhibber, S., Kaur, T., and Kaur, S., PloS One 8, (2013).
8. Mendes, J. J., Leandro, C., Corte-Real, S., Barbosa, R., Cavaco-Silva, P., Melo-Cristino, J., Gorski, A., and Garcia, M., Wound Repair Regener. 21, 595 (2013).
9. Lungren, M. P., Christensen, D., Kankotia, R., Falk, I., Paxton, B. E., and Kim, C. Y., Bacteriophage 3, (2013).
10. Yilmaz, C., Colak, M., Yilmaz, B. C., Ersoz, G., Kutateladze, M., and Gozlugol, M., J. Bone Jt. 95, 117 (2013).
11. Miᶒdzybrodzki, R., Fortuna, W., Weber-Dᶏbrowska, B., and Górski, A., Postepy. Hig. Med. Dosw. 61, 461 (2007).
12. Parasion, S., Kwiatek, M., Gryko, R., Mizak, L., Malm, A., Pol. J. Microbiol. 63, 137 (2014).
13. Doss, J., Culbertson, K., Hahn, D., Camacho, J. and Barekzi, N., Viruses 9, (2017).
14. Andriolo, J.M., Hensleigh, R.M., McConnell, C.A., Pedulla, M., Hailer, K., Kasinath, R., Wyss, G., Gleason, W., and Skinner, J.L., J. Vac. Sci. Technol. B 32 (2014).
15. Palmer, L. C., Newcomb, C. J., Kaltz, S. R., Spoerke, E. D., and Stupp, S. I., Chem. Rev. 108, 4754 (2008).
16. Šupová, M, Ceram. Int. 41, 9203 (2015).
17. Prem, V. S. and Chandra, S., J. Biomater Tissue Eng. 2, 269 (2012).
18. Sahdev, P., Podaralla, S., Kaushik, R. S., and Perumal, O., J. Biomed. Nanotechnol. 9, 132 (2013).
19. Lee, D., Upadhye, K., and Kumta, P.N., Mater. Sci. Eng. B 177, 269 (2012).
20. Keshri, A. K. and Agarwal, A., Nanosci. Nanotechnol. Let. 4, 228 (2012).
21. Ezhaveni, S., Yuvakkumar, R., Rajkumar, M., Sundaram, N. M., and Rajendran, V., J. Nanosci. Nanotechnol. 13, 1631 (2013).
22. Xu, H., Cao, B., George, A., and Mao, C. B., Biomacromolecules 12, 2193 (2011).
23. He, T., Abbineni, G., Cao, B., and Mao, C. B., Small 6, 2230, (2010).
24. Andriolo, J. M., Rossi, R. J., McConnell, C. A., Connors, B. I., Trout, K. L., Hailer, M. K., and Skinner, J. L., J. Vac. Sci. Technol. 15, 908 (2016).
25. Korehei, R. and Kadla, J., J. Appl. Microbiol. 114, 1425 (2013).
26. Korehei, R. and Kadla, J. F., Carbohyd. Polym. 100, 150 (2014).
27. Beisel, J. D., Murphy, J. P., Andriolo, J. M., Kooistra-Manning, E. A., Nicolaysen, S., Boese, O., Fleming, J., Nakagawa, W., and Skinner, J. L., J. Vac. Sci. Technol. B 34, (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Advances
  • ISSN: -
  • EISSN: 2059-8521
  • URL: /core/journals/mrs-advances
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed