Skip to main content
×
×
Home

Lead-free BaTiO3 Nanowire Arrays-based Piezoelectric Energy Harvester

  • Changyeon Baek (a1), Hyeonbin Park (a2), Jong Hyuk Yun (a1), Do Kyung Kim (a1) and Kwi-Il Park (a2)...
Abstract

Vertically aligned BaTiO3 nanowire (NW) arrays on a Ti substrate were adopted for use in piezoelectric energy harvesting device that scavenges electricity from mechanical energy. BaTiO3 NWs were simultaneously grown at the top and bottom surfaces of a Ti substrate by two-step hydrothermal process. To characterized the piezoelectric output performance of the individual NW, we transferred a BaTiO3 single NW that was selected from well-aligned NW arrays onto a flexible substrate and measured the electric signals during the bending/unbending motions. For fabricating a piezoelectric energy harvester (PEH), both NW arrays were sandwiched between two transparent indium tin oxide (ITO)-coated polyethylene terephthalate (PET) plastic films and then packaged with polydimethylsiloxane (PDMS) elastomer. A lead-free BaTiO3 NW array-based PEH produced an output voltage of about 90 V and a maximum current of 1.2 μA under periodically bending motions.

Copyright
Corresponding author
*(Email: kipark@gntech.ac.kr)
References
Hide All
1. Aubrecht, G. J., Energy: Physical, Environmental, and Social Impact, 3rd ed. (Pearson Education, London, 2006) pp. 215.
2. Priya, S., Inman, D. J., Energy Harvesting Technologies. (Springer Science, New York, 2009).
3. Qi, Y. and McAlpine, M. C., Energy Environ. Sci. 3, 1275 (2010).
4. Beeby, S. P., Tudor, M. J. and White, N. M., Meas. Sci. Technol. 17, R175 (2006).
5. Wang, Z. L. and Song, J., Science 312, 242 (2006).
6. Wang, X., Song, J., Liu, J. and Wang, Z. L., Science 316, 102 (2007).
7. Yang, R., Qin, Y., Dai, L. and Wang, Z. L., Nat. Nanotechnol. 4, 34 (2009).
8. Zhu, G., Yang, R., Wang, S. and Wang, Z. L., Nano Lett. 10, 3151 (2010).
9. Lu, M. Y., Song, J., Lu, M. P., Lee, C. Y., Chen, L. J. and Wang, Z. L., ACS Nano 3, 357 (2009).
10. Lin, Y. F., Song, J., Ding, Y., Lu, S. Y. and Wang, Z. L., Appl. Phys. Lett. 92, 022105 (2008).
11. Huang, C. T., Song, J. H., Lee, W. F., Ding, Y., Gao, Z. Y., Hao, Y., Chen, L. J. and Wang, Z. L., J. Am. Chem. Soc. 132, 4766 (2010).
12. Park, K.-I., Xu, S., Liu, Y., Hwang, G. T., Kang, S. J. L., Wang, Z. L. and Lee, K. J., Nano Lett. 10, 4939 (2010).
13. Park, K.-I., Son, J. H., Hwang, G.-T., Jeong, C. K., Ryu, J., Koo, M., Choi, I., Lee, S. H., Byun, M., Wang, Z. L. and Lee, K. J., Adv. Mater. 26, 2514 (2014).
14. Xu, S., Poirier, G. and Yao, N., Nano Lett. 12, 2238 (2012).
15. Moorthy, B., Baek, C., Wang, J. E., Jeong, C. K., Moon, S., Park, K.-I. and Kim, D. K., RSC Adv. 7, 260 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Advances
  • ISSN: -
  • EISSN: 2059-8521
  • URL: /core/journals/mrs-advances
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 38 *
Loading metrics...

Abstract views

Total abstract views: 363 *
Loading metrics...

* Views captured on Cambridge Core between 24th April 2017 - 14th August 2018. This data will be updated every 24 hours.