Skip to main content Accessibility help

Low Cost Method for Generating Periodic Nanostructures by Interference Lithography Without the Use of an Anti-Reflection Coating

  • Omree Kapon (a1) (a2), Merav Muallem (a1) (a2), Alex Palatnik (a1) (a2), Hagit Aviv (a1) (a2) and Yaakov. R. Tischler (a1) (a2)...


Interference lithography has proven to be a useful technique for generating periodic sub-diffraction limited nanostructures. Interference lithography can be implemented by exposing a photoresist polymer to laser light using a two-beam arrangement or a one-beam configuration based on a Lloyd’s Mirror Interferometer. For typical photoresist layers, an anti-reflection coating must be deposited on the substrate to prevent adverse reflections from cancelling the holographic pattern of the interfering beams. For silicon substrates, such coatings are typically multilayered and complex in composition. By thinning the photoresist layer to a thickness well below the quarter wavelength of the exposing beam, we demonstrate that interference gratings can be generated without an anti-reflection coating on the substrate. We used ammonium dichromate doped polyvinyl alcohol as the positive photoresist because it provides excellent pinhole free layers down to thicknesses of 40 nm, and can be cross-linked by a low-cost single mode 457 nm laser and etched in water. Gratings with a period of 320 nm and depth of 4 nm were realized, as well as a variety of morphologies depending on the photoresist thickness. This simplified interference lithography technique promises to be useful for generating periodic nanostructures with high fidelity and minimal substrate treatments.


Corresponding author


Hide All
1 Lemme, M.C., Moormann, C., Lerch, H., Möller, M., Vratzov, B., and Kurz, H., Nanotechnology 15, S208 (2004).
2 Selvaraja, S.K., Jaenen, P., Bogaerts, W., Van Thourhout, D., Dumon, P., and Baets, R., J. Light. Technol. 27, 4076 (2009).
3 Burrow, G.M., Leibovici, M.C.R., and Gaylord, T.K., Appl. Opt. 51, 4028 (2012).
4 Wolferen, H., Abelmann, L., and van Wolferen, H., Lithogr. Princ. Process. Mater. 133 (2011).
5 Divliansky, I., Mayer, T.S., Holliday, K.S., and Crespi, V.H., Appl. Phys. Lett. 82, 1667 (2003).
6 Turberfield, A. J., Nature 404, 53 (2000).
7 Lu, C. and Lipson, R.H., Laser Photonics Rev. 4, 568 (2010).
8 Xie, Q., Hong, M.H., Tan, H.L., Chen, G.X., Shi, L.P., and Chong, T.C., J. Alloys Compd. 449, 261 (2008).
9 Pease, R.F., Microelectron. Eng. 78–79, 381 (2005).
10 Labeyrie, A. and Flamand, J., Opt. Commun. 1, 5 (1969).
11 Rudolph, D. and Schmahl, G., Optik (Stuttg). 30, 475 (1970).
12 Berger, V., Gauthier-Lafaye, O., and Costard, E., J. Appl. Phys. 82, 60 (1997).
13 Haast, M. A., Heskamp, I., Abelmann, L., Lodder, J., and Popma, T.J., J. Magn. Magn. Mater. 193, 511 (1999).
14 Choi, W.K., Liew, T.H., Dawood, M.K., Smith, H.I., Thompson, C. V., and Hong, M.H., Nano Lett. 8, 3799 (2008).
15 Päivänranta, B., Langner, A., Kirk, E., David, C., and Ekinci, Y., Nanotechnology 22, 375302 (2011).
16 Moon, J.H., Yang, S., and Ford, J., Polym. Adv. Technol. 17, 83 (2006).
17 Quiñónez, F., Menezes, J.W., Cescato, L., Rodriguez-Esquerre, V.F., Hernandez-Figueroa, H., and Mansano, R.D., Opt. Express 14, 4873 (2006).
18 de Boor, J., Geyer, N., Gösele, U., and Schmidt, V., Opt. Lett. 34, 1783 (2009).
19 Barikani, M., Simova, E., and Kavehrad, M., 34, 2172 (1995).
20 Bogaerts, W., Taillaert, D., Luyssaert, B., Dumon, P., Van Campenhout, J., Bienstman, P., Van Thourhout, D., and Baets, R., 12, 1583 (2004).
21 Bogaerts, W., Wiaux, V., Taillaert, D., Beckx, S., Luyssaert, B., Bienstman, P., and Baets, R., IEEE J. Sel. Top. Quantum Electron. 8, 928 (2002).
22 Miyake, M., Chen, Y.-C., Braun, P. V., and Wiltzius, P., Adv. Mater. 21, 3012 (2009).
23 Spinelli, P., Verschuuren, M. a., and Polman, a., Nat. Commun. 3, 692 (2012).
24 Heavens, O.S., Opt. Acta Int. J. Opt. 33, 1336 (1986).
25 Kapon, O., Muallem, M., Palatnik, A., Aviv, H., and Tischler, Y.R., Appl. Phys. Lett. 107, (2015).
26 Virganavius, D., Limatonis, A. Jurkeviute, Tamulevius, T., and Tamulevius, S., Proc. SPIE - Int. Soc. Opt. Eng. 9170, 1 (2014).
27 Ji, R., Lee, W., Scholz, R., Gösele, U., and Nielsch, K., Adv. Mater. 18, 2593 (2006).
28 Stange, T.G., Mathew, R., Evans, D.F., and Hendrickson, W. a., Langmuir 8, 920 (1992).
29 Hall, D.B., Underhill, P., and Torkelson, J.M., Polym. Eng. Sci. 38, 2039 (1998).
30 Berezin, S., Kalanoor, B.S., Taha, H., Garini, Y., and Tischler, Y.R., Nanophotonics 3, 117 (2014).
31 Aviv, H., Harazi, S., Schiff, D., Ramon, Y., and Tischler, Y.R., Thin Solid Films 564, 86 (2014).
32 Mailhot, G., Bolte, M., and France, A.C., 1228 (1993).
33 Kelly, J., Gleeson, M., Close, C., O’Neill, F., Sheridan, J., Gallego, S., and Neipp, C., Opt. Express (2005).
34 Xue, L., Zhang, J., and Han, Y., Prog. Polym. Sci. 37, 564 (2012).
35 Bai, S., Zhou, W., Lin, Y., Zhao, Y., Chen, T., Hu, A., and Duley, W.W., J. Nanoparticle Res. 16, 2470 (2014).
36 Pang, Z. and Zhang, X., Opt. Commun. 285, 4583 (2012).


Low Cost Method for Generating Periodic Nanostructures by Interference Lithography Without the Use of an Anti-Reflection Coating

  • Omree Kapon (a1) (a2), Merav Muallem (a1) (a2), Alex Palatnik (a1) (a2), Hagit Aviv (a1) (a2) and Yaakov. R. Tischler (a1) (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed