Skip to main content Accessibility help

Modulation of carbon nanotube yield and type through the collective effects of initially deposited catalyst amount and MgO underlayer annealing temperature

  • Takashi Tsuji (a1), Guohai Chen (a1), Kenji Hata (a1), Don N. Futaba (a1) and Shunsuke Sakurai (a1)...


Recently, the millimetre-scale, highly efficient growth of single-wall carbon nanotube (SWCNT) forests from iron (Fe) catalysts has been reported through the annealing of the magnesia (MgO) underlayer. Here, we report the modulation of the CNT yield (height) and average number of CNT walls for a Fe/MgO catalyst system through the collective effects of initial Fe amount and MgO annealing temperature. Our results revealed the existence of a well-defined region for high yield SWCNT forest growth in the domain of deposited Fe thickness and MgO annealing temperature. Through topographic examinations of the catalyst surface using atomic force microscopy, we confirmed that our results stem from the collective effects of increased amounts of surface-bound Fe through the amount of deposition and suppression of Fe subsurface diffusion, together govern the amount of surface-bound catalyst. The combination of these mechanisms determined the final nanoparticle size, density, and stability and could explain the three distinctly defined regions: low yield SWCNT growth, high yield SWCNT growth, and high yield multiwall CNT growth. Furthermore, we explained the observed borders between these three regions.


Corresponding author


Hide All
1.Murakami, Y., Chiashi, S., Miyauchi, Y., Hu, M., Ogura, M., Okubo, T., and Maruyama, S., Chem. Phys. Lett. 385, 298 (2004).
2.Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., and Iijima, S., Science 306, 1362 (2004).
3.Xu, Y.-Q., Flor, E., Kim, M.J., Hamadani, B., Schmidt, H., Smalley, R.E., and Hauge, R.H., J. Am. Chem. Soc. 128, 6560 (2006).
4.Pint, C.L., Xu, Y.Q., Pasquali, M., and Hauge, R.H., ACS Nano 2, 1871 (2008).
5.Futaba, D.N., Goto, J., Yamada, T., Yasuda, S., Yumura, M., and Hata, K., Carbon 48, 4542 (2010).
6.Chen, G., Sakurai, S., Yumura, M., Hata, K., and Futaba, D.N., Carbon 107, 433 (2016).
7.Islam, A.E., Nikolaev, P., Amama, P.B., Saber, S., Zakharov, D., Huffman, D., Erford, M., Sargent, G., Semiatin, S.L., Stach, E.A., and Maruyama, B., Nano Lett. 14, 4997 (2014).
8.Meshot, E.R., Plata, D.L., Tawfick, S., Zhang, Y., Verploegen, E.A., and Hart, A.J., ACS Nano 3, 2477 (2009).
9.Noda, S., Hasegawa, K., Sugime, H., Kakehi, K., Zhang, Z., Maruyama, S. and Yamaguchi, Y., Jpn. J. Appl. Phys. 46, L399 (2007).
10.Chakrabarti, S., Kume, H., Pan, L., Nagasaka, T., and Nakayama, Y., J. Phys. Chem. C 111, 1929 (2007).
11.Amama, P.B., Pint, C.L., Kim, S.M., McJilton, L., Eyink, K.G., Stach, E.A., Hauge, R.H., and Maruyama, B., ACS Nano 4, 895 (2010).
12.Zhong, G., Iwasaki, T., Robertson, J., and Kawarada, H., J. Phys. Chem. B 111, 1907 (2007).
13.Tsuji, T., Hata, K., Futaba, D.N., and Sakurai, S., J. Am. Chem. Soc. 138, 16608 (2016).
14.Tsuji, T., Hata, K., Futaba, D.N., and Sakurai, S., Nanoscale 9, 17617 (2017).
15.Yamada, T., Namai, T., Hata, K., Futaba, D.N., Mizuno, K., Fan, J., Yudasaka, M., Yumura, M., and Iijima, S., Nat. Nanotechnol. 1, 131 (2006).
16.Zhao, B., Futaba, D.N., Yasuda, S., Akoshima, M., Yamada, T., and Hata, K., ACS Nano 3, 108 (2009).
17.Chen, G., Futaba, D.N., Sakurai, S., Yumura, M., and Hata, K., Carbon 67, 318 (2014).
18.Chen, G., Davis, R.C., Futaba, D.N., Sakurai, S., Kobashi, K., Yumura, M., and Hata, K., Nanoscale 8, 162 (2016).
19.Sakurai, S., Nishino, H., Futaba, D. N., Yasuda, S., Yamada, T., Maigne, A., Matsuo, Y., Nakamura, E., Yumura, M. and Hata, K., J. Am. Chem. Soc., 134. 2148 (2012).
20.Burt, D., Whyte, W.M., Weaver, J.M.R., Glidle, A., Edgeworth, J.P., Macpherson, J. V., and Dobson, P. S., J. Phys. Chem. C, 113 15133 (2009).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed