Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-20T01:27:04.636Z Has data issue: false hasContentIssue false

Non-Conventional Atmospheric Pressure Plasma Sources for Production of Hydrogen

Published online by Cambridge University Press:  28 January 2018

Hana Baránková*
Affiliation:
Uppsala University, Ångström Laboratory, Division of Electricity, Plasma Group, Box 534, SE-751 21 Uppsala, Sweden BB Plasma Design AB, Ulleråkersvägen 64, SE-756 43, Uppsala, Sweden
Ladislav Bardos
Affiliation:
Uppsala University, Ångström Laboratory, Division of Electricity, Plasma Group, Box 534, SE-751 21 Uppsala, Sweden BB Plasma Design AB, Ulleråkersvägen 64, SE-756 43, Uppsala, Sweden
Adela Bardos
Affiliation:
BB Plasma Design AB, Ulleråkersvägen 64, SE-756 43, Uppsala, Sweden
Get access

Abstract

The atmospheric pressure plasma sources with a coaxial geometry were used for generation of the radio frequency, microwave and pulsed dc plasmas inside water and aqueous solutions. Pulsed dc plasma generated in ethanol-water mixtures leads to production of the hydrogen-rich synthesis gas with hydrogen content up to 65 %. The effect of various plasma generation regimes on the performance of plasma, on the hydrogen production efficiency and on the hydrogen-rich synthesis gas production was examined. A role of the composition of the ethanol-water mixture was investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kalamaras, C. M. and Efstathiou, A. M., Hindawi Publ. Corp., Conference Papers in Energy, Vol. 2013, ID 690627, 9 pages. Available at: http://dx.doi.org/10.1155/2013/690627.Google Scholar
Holladay, J. D., Hu, J., King, D. L. and Wang, Y., Catalysis Today 139(4), 244 (2009).Google Scholar
Zhang, Y-P., Li, Y.. Wang, Y., Liu, Ch-J. and Eliasson, B., Fuel Processing Technology 83, 101 (2003).Google Scholar
Wang, Q., Shi, H., Yan, B., Jin, Y. and Cheng, Y., Int. J. Hydrogen Energy 36(14), 8301 (2011).Google Scholar
Li, D., Li, X., Bai, M., Tao, X., Shang, S., Dai, X. and Yin, Y., Int. J. Hydrogen Energy 34, 308 (2009). doi:10.1016/j.ijhydene.2008.10.053.Google Scholar
Chaffin, J.H., Bobbio, S. M., Inyang, H. I. and Kaanagbara, I., J. Energy Engineering 132, 104 (2006). DOI: 10.1061/(ASCE)0733-9402(2006)132:3(104).Google Scholar
Yan, Z., Chen, L. and Wang, H., Chinese J. Proc. Eng. 6(3), 396 (2006).Google Scholar
Yan, Z., Chen, L. and Wang, H., J. Phys. D: Appl. Phys. 41, 55205 (2008).Google Scholar
Tatarova, E., Bundaleska, N., Dias, F. M., Tsyganov, D., Saavedra, R. and Ferreira, C. M., Plasma Sources Sci. Technol. 22, 065001 (2013). doi:10.1088/0963-0252/22/6/065001Google Scholar
Rincon, R., Jimenez, M., Munoz, J., Saez, M. and Calzada, M. D., Plasma Chem. Plasma Process. 34, 145 (2014). DOI 10.1007/s11090-013-9502-4.Google Scholar
Czylkowski, D., Hrycak, B., Miotk, R., Jasinski, M., Dors, M. and Mizeraczyk, J., Int. J. Hydrogen Energy 40, 14039 (2015). http://dx.doi.org/10.1016/j.ijhydene.2015.06.101.Google Scholar
Lopez, J.L., Vezzu, G., Freilich, A., Paolini, B., Eur. Phys. J. D 67, 180 (2013). DOI: 10.1140/epjd/e2013-40126-2.Google Scholar
Bardos, L., Barankova, H. and Bardos, A., Plasma Chem. Plasma Process 37, 115 (2017). DOI 10.1007/s11090-016-9766-6.Google Scholar
Ishijima, T., Sugiura, H., Saito, R., Toyoda, H. and Sugai, H., Plasma Sources Sci. Technol. 19, 015010 (2010).Google Scholar
Lee, S.W. and Sankaran, R.M., Chapter 12 “Plasma Electrochemistry: A Novel Chemical Process for the Synthesis and Assembly of Nanomaterials, in Complex Plasmas, Bonitz, M. et al. ., Editors, p. 399, Springer Series on Atomic, Optical, and Plasma Physics, 82, DOI: 10.1007/978-3-319-05437-7_12.Google Scholar
Joshi, A.A., Locke, B.R., Arce, P. and Finney, W.C., Journal of Hazardous Materials 41, 3 (1995).Google Scholar
Park, Ch., Quant, J.. Spectrosc. Radiat. Transfer 12, 323 (1971).Google Scholar