Skip to main content

Non-Conventional Atmospheric Pressure Plasma Sources for Production of Hydrogen

  • Hana Baránková (a1) (a2), Ladislav Bardos (a1) (a2) and Adela Bardos (a2)

The atmospheric pressure plasma sources with a coaxial geometry were used for generation of the radio frequency, microwave and pulsed dc plasmas inside water and aqueous solutions. Pulsed dc plasma generated in ethanol-water mixtures leads to production of the hydrogen-rich synthesis gas with hydrogen content up to 65 %. The effect of various plasma generation regimes on the performance of plasma, on the hydrogen production efficiency and on the hydrogen-rich synthesis gas production was examined. A role of the composition of the ethanol-water mixture was investigated.

Corresponding author
Hide All
1.Kalamaras, C. M. and Efstathiou, A. M., Hindawi Publ. Corp., Conference Papers in Energy, Vol. 2013, ID 690627, 9 pages. Available at:
2.Holladay, J. D., Hu, J., King, D. L. and Wang, Y., Catalysis Today 139(4), 244 (2009).
3.Zhang, Y-P., Li, Y.. Wang, Y., Liu, Ch-J. and Eliasson, B., Fuel Processing Technology 83, 101 (2003).
4.Wang, Q., Shi, H., Yan, B., Jin, Y. and Cheng, Y., Int. J. Hydrogen Energy 36(14), 8301 (2011).
5.Li, D., Li, X., Bai, M., Tao, X., Shang, S., Dai, X. and Yin, Y., Int. J. Hydrogen Energy 34, 308 (2009). doi:10.1016/j.ijhydene.2008.10.053.
6.Chaffin, J.H., Bobbio, S. M., Inyang, H. I. and Kaanagbara, I., J. Energy Engineering 132, 104 (2006). DOI: 10.1061/(ASCE)0733-9402(2006)132:3(104).
7.Yan, Z., Chen, L. and Wang, H., Chinese J. Proc. Eng. 6(3), 396 (2006).
8.Yan, Z., Chen, L. and Wang, H., J. Phys. D: Appl. Phys. 41, 55205 (2008).
9.Tatarova, E., Bundaleska, N., Dias, F. M., Tsyganov, D., Saavedra, R. and Ferreira, C. M., Plasma Sources Sci. Technol. 22, 065001 (2013). doi:10.1088/0963-0252/22/6/065001
10.Rincon, R., Jimenez, M., Munoz, J., Saez, M. and Calzada, M. D., Plasma Chem. Plasma Process. 34, 145 (2014). DOI 10.1007/s11090-013-9502-4.
11.Czylkowski, D., Hrycak, B., Miotk, R., Jasinski, M., Dors, M. and Mizeraczyk, J., Int. J. Hydrogen Energy 40, 14039 (2015).
12.Lopez, J.L., Vezzu, G., Freilich, A., Paolini, B., Eur. Phys. J. D 67, 180 (2013). DOI: 10.1140/epjd/e2013-40126-2.
13.Bardos, L., Barankova, H. and Bardos, A., Plasma Chem. Plasma Process 37, 115 (2017). DOI 10.1007/s11090-016-9766-6.
14.Ishijima, T., Sugiura, H., Saito, R., Toyoda, H. and Sugai, H., Plasma Sources Sci. Technol. 19, 015010 (2010).
15.Lee, S.W. and Sankaran, R.M., Chapter 12 “Plasma Electrochemistry: A Novel Chemical Process for the Synthesis and Assembly of Nanomaterials, in Complex Plasmas, Bonitz, M. et al. ., Editors, p. 399, Springer Series on Atomic, Optical, and Plasma Physics, 82, DOI: 10.1007/978-3-319-05437-7_12.
16.Joshi, A.A., Locke, B.R., Arce, P. and Finney, W.C., Journal of Hazardous Materials 41, 3 (1995).
17.Park, Ch., Quant, J.. Spectrosc. Radiat. Transfer 12, 323 (1971).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Advances
  • ISSN: -
  • EISSN: 2059-8521
  • URL: /core/journals/mrs-advances
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed